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Preface
In my career as a mechanical engineering designer, a recurring problem was finding information 
or a method of analysis for a specific design problem in which I was engaged at the time. In those 
early days, the Internet was not available, and substantial time was spent trying to obtain informa-
tion. One of the first tasks I was given when entering the busy machine tool drawing office was 
to try and monitor the length of time designers and draughtsmen spent in obtaining design infor-
mation. The surprising result was that a designer/draughtsman spent less than 10% of his or her 
time actually designing and drawing, and the remainder of the time was spent finding the relevant 
information. That led the company to invest in a technical library that included a wide selection of 
technical books and suppliers’ catalogues. A follow-up survey approximately a year later showed 
that the library had indeed helped reduce the time spent finding relevant product and methods 
information.

In later life, when working in small design offices, I was often confronted with the same prob-
lems of finding relevant design information and as a result had to build up my own personal refer-
ence library. This book is a result of this work, and hopefully it will help other practising and student 
engineering designers who are faced with the same problem.

In Chapter 1, reference information is included covering such topics as trigonometry, differential 
and integral calculus, Laplace transforms, determinants and matrices.

In Chapter 2, numerical analysis, a broad subject matter, had to be reduced to covering numerical 
methods of integration, Newton–Raphson’s methods, the Jacobi iterative method and the Gauss–
Seidel method.

Chapter 3, ‘Properties of Sections and Figures’, is self-explanatory.
Chapter 4 covers statics, that is, forces in frameworks.
Chapter 5, although titled ‘Dynamics’, concentrates on kinematic analysis.
In Chapter 6, I have tried to cover the essentials of mechanical vibrations, including free, damped, 

simple harmonic and forced vibrations within the space available.
Chapter 7, ‘Introduction to Control Systems’, has been restricted to modelling individual ele-

ments of control systems. It is important to get the model correct before moving on to the analysis 
of the system, which is covered by other excellent books on the subject.

From my experience, most student engineers have difficulty understanding the use of transfer 
functions, and it was thought more important to concentrate on this aspect.

Chapter 8, heat and temperature, is a short chapter giving basic information on heat conduction 
and thermal expansions.

Chapters 9 and 10 cover the basics of thermodynamic and fluid dynamics.
Finally, Chapter 11 is an important one on the ‘Introduction to Linkages’. The discussion is 

restricted to four-bar linkages, as these are the most common linkages that the student engineer will 
meet. It was felt that a discussion on six-bar linkages was outside the scope of this book and will be 
covered in a future publication on mechanism design.

At this point, I want to apologise for any mistakes or omissions; these are entirely my fault, and 
I would welcome any feedback on corrections among others so that they can be included in future 
reprints.
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Mathematics

1.1  TRIGONOMETRY

1.1.1  Right-Angled Triangle

(See Figure 1.1.)

	
Area

1
2

a b= .
	

(1.1)

Pythagoras Theorem

	 c a b2 2 2= + 	 (1.2)

	 A B C 180 , B 90 A+ + = = −° ° 	 (1.3)

	 sin A cos A cos A sin A( ) ( ),90 90− = − = 	 (1.4)

Definitions:

	
sin A

opposite
hypotenuse

a
c

= =
	

(1.5)

	
cos A

adjacent
hypotenuse

b
c

= =
	

(1.6)

	
tan A

opposite
adjacent

a
b

= =
	

(1.7)

	
cosecant A

1
sin

c
a

= =
	

(1.8)

	
secant A

cos
c
b

= =1

	
(1.9)

	
cotangent A

1
tangent

b
a

= =
	

(1.10)

1
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1.1.2  Oblique-Angled Triangles

(See Figure 1.2)

Cosine rule:

	 a b c 2bc cos A2 2 2= + − 	 (1.11)

	 b a c 2ac cos B2 2 2= + − 	 (1.12)

	 c a b 2ab cos C2 2 2= + − 	 (1.13)

Sine rule:

	

a
sin A

b
sin B

c
sin C

= =
	

(1.14)

	
Area s(s a)(s b)(s c)

1
2

ab sin C= − − − =
	

(1.15)

where

	 s
a b c

2
= + +

1.1.3 T rigonometric Relations

	
sin(A)

[1 cos(2A)]
2

2 = −
	

(1.16)

	
sin(A) cos(A)

sin(2A)
2

=
	

(1.17)

A

a

b

B
c C

FIGURE 1.2  Oblique-angled triangle.

a

B

C

c

bA

Pythagoras theorem
c2 = a2 + b2

Area = 12 a · b

FIGURE 1.1  Right-angled triangle.
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	 sin A B sin A cos B cos A sin B( ) ( ) ( ) ( ) ( )+ = + 	 (1.18)

	
cos A B cos A cos B sin A sin B( ) ( ) ( ) ( ) ( )+ = −

	 (1.19)

	
cos A B cos A cos B sin A sin B( ) ( ) ( ) ( ) ( )− = +

	 (1.20)

	
sin(A) sin(B)

1 cos(A B) cos(A B)
2

 = − + + −[ ]
	

(1.21)

	 cos A cos A( ) ( )− = 	 (1.22)

	 sin(A) cos A 12 2+ = 	 (1.23)

	
cos(A)

1 cos(2A)
2

2 = +[ ]

	
(1.24)

	 1 + =cot(A) cosec(A)2 2
	 (1.25)

1.2  HYPERBOLIC FUNCTIONS

Hyperbolic functions involve the exponential functions, ex and e−x, where e is the base of the 
Napierian logs (ln). (e = 2.7182828…).

Definitions:

	
Hyperbolic sine: sinh x

e e
2

x -x

= −
	

(1.26)

	
Hyperbolic cosine: cosh x

e e
2

x -x

= +
	

(1.27)

	
Hyperbolic tangent: tanh x

e e
e e

sinh x
cosh x

x -x

x -x
= −

+
=

	
(1.28)

	

cosh2x sinh x 1: 1 tanh x
1

cosh x
sech x

                   

2 2
2

2− = − = =

                                                       (hypperbolic secant) 	

(1.29)

1.2.1 I nverse Hyperbolic Functions

Note: ln = loge

	 y sinh : y equals the inverse hyperbolic sinh of x1= − ‘ ’ 	 (1.30)

	 sinh x ln x x 1 for all values of x2− = + +1 ( ) 	
(1.31)
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	 cosh x ln(x x 1) x 12− = ± + − ≥1
	

(1.32)

	
tanh x

1
2

1 x
1 x

x 1− +
− >1 = ln

	
(1.33)

1.3  SOLUTION OF THE QUADRATIC EQUATION

	 ax bx c 0 a 0, and a, b and c are real2 + + = ≠ 	 (1.34)

The roots are

	
x

1
2a

( b b 4ac )2= − ± −
	

(1.35)

ax2 + bx + c = 0, a ≠ 0 and a, b and c are real.

1.4  SOLUTION OF SIMULTANEOUS EQUATIONS (TWO UNKNOWNS)

	 a11x1 + a12x2 = b1	 (1.36)

	 a21x1 + a22x2 = b2	 (1.37)

The solutions are

	
x

b a b a
a a a a

and x
b a b a

a a a a1
1 22 2 12

11 22 12 21
2

2 11 1 21

11 22 12 21

= −
− = −

− 	
(1.38)

1.5  LAWS OF EXPONENTS

There are only six major laws of exponents that determine all that can be done with exponents and 
exponential functions:

	 1.	 a a ax+y x y= � (1.39)

	 2.	 a
a
a

x y
x

y
− = � (1.40)

	 3.	 (a ) ax y xy= � (1.41)

	 4.	 (ab) a bx x x= � (1.42)

	 5.	 a ax/y xy= � (1.43)

	 6.	a° = 1� (1.44)
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1.6  EXPANSIONS

	
(a b) a 2ab b2 2 2± = ± +

	
(1.45)

	

(a b) a 3a b 3ab b3 3 2 2 3± = ± + ±
	

(1.46)

	
(a b ) (a b)(a b)2 2− = − +

	
(1.47)

	

(a b ) (a b)(a ab b )3 3 2 2± = ± − + +/

	

(1.48)

	

(a b) a na b
n(n 1)

2!
a bn n n 1 n 2 2+ = + + − +− − �

	

(1.49)

1.7 � REAL ROOT OF THE EQUATION F(X) = 0 USING THE 
NEWTON–RAPHSON METHOD

From Figure 1.3, it is seen that the derivative of y = f(x) is continuous and no point of inflexion exists 
between A and B.

x0 is the true root (which is unknown) of f(x) = 0, that is when y = 0.
x1 is a first approximation to x0: obtained graphically or by trial and error.
A better approximation to x0 is given by

	

x x
f(x )
f (x )2 1

1

1

= −
′

	
(1.50)

This assumes that x1 is near enough to x0.
This process may be repeated several times to obtain closer approximations to x0.

y B

A x2

Tangent at x1

x0

x1

y = f(x)

x
0

FIGURE 1.3  Real roots of the equation.
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1.8  SERIES

Binomial:

	
(1 x) 1 nx

n(n 1)
2!

x
n(n 1)(n 2)

3!
xn 2 3± = ± + − ± − − +�

	
(1.51)

Maclaurin:

	
f(x) f(0) xf (0)

x
2!

f (0)
x
3!

f (0)
2 3

= + ′ + ′′ + ′′′ +�
	

(1.52)

Taylor:

	
f(a h) f(a) hf (a)

h
2!

f (a)
h
3!

f (a)
2 3

+ = + + + +′ ′′ ′′′ �
	

(1.53)

1.9  LOGARITHMS

If y = xn where n is the logarithm of y to the base x, that is, if 100 = 102, 10 is the base and 2 is the 
logarithm.

10 is the base for common logarithms (log).
e = 2.71828… is the base for natural (Napierian) logarithms (ln).

	
log(A . B) log(A) log(B)= +

	 (1.54)

	

log
A
B

log(A) log(B)






= −
	

(1.55)

	
log(A) m log(A)n =

	 (1.56)

Also

	
ln(A B) ln(A) ln(B)⋅ = +

	 (1.57)

	

ln
A
B

ln(A) ln(B)






= −
	

(1.58)

	
ln(A) m ln(A)m =

	 (1.59)

Note:

If x = log N or x = ln N, then N = 10x or N = ex.
N is the antilogarithm of x, that is, log (1) = 0 and log 10 = 1,
ln (1) = 0 and ln e = 1.
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1.10  DIFFERENTIAL CALCULUS

Definitions:
(See Figure 1.4)

The value of the derivative at any point ‘P’ on a curve is equal to the slope of the tangent to the 
curve at that point.

	
∆
∆

y
x

 slope of tangent at P= tan ( )β 	
(1.60)

as Δx becomes smaller, β → α,
that is

	 Q P 
y
x

dy
dx

→ → =∆
∆ tanα 	 (1.61)

Note:

	
The first derivative 

dy
dx

 is referred to as y  = f (x) ′ ′

	
and the second derivative 

d y
d x

, y  = f (x), etc.
2

2
′′ ′′

Table 1.1 gives a range of standard derivatives for y or f(x).

1.11  INTEGRAL CALCULUS

Definitions:
(See Figure 1.5)

1.11.1 I ntegration Is the Inverse of Differentiation

If

	

F(x) = F(x)dx then
d
dx

F(x) = F (x) = f(x)
a

b

∫ ′
	

(1.62)

where F(x) is referred to as the primitive of the function f(x).

∆x and ∆y are
infinitesimals 

dx and dy are
differentials 

y = f(x)

Q(x, y)

P(x, y)y

x
x

0

Tangent at P

Tangent at Q

dy

α

∆y

∆x = dxβ

FIGURE 1.4  Definitions for differential calculus.
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TABLE 1.1
Table of Standard Derivatives

y or f(x) dy/dx or f′(x)

1. x 1
2. xn nxn−1

3. 1
x

1
x(2)

4. x 1

2 x

5. ax axln a
6. axn anxn−1

7. ex ex

8. eax aeax

9. enx nenx

10. log x 1
x

11. ln ax 1
x

12. xx xx(log + 1)
13. sin x cos x
14. sin ax a cos ax
15. cos x −sin x
16. cos ax −a sin ax
17. tan x sec2 x
18. tan ax a sec2 ax
19. cot x −cosec2 x
20. cot ax −a cosec2 ax
21. sec x sec x ⋅ tan x
22. sec ax a sec ax tan ax
23. cosec x −cosec x ⋅ cot x
24. cosec ax −a cosec ax ⋅ cot ax

25. sin−1x 1

1 22−
<



x

| |y
π

26. sin−1 x
a

1
2 2a x

0 y
−

< <( )π

27. cos−1x −
−

< <1

1
0

2( )
( )

x
y π

28. cos−1 x
a

−
−
1

2( )a x2

29. tan−1 x 1
1 2+

<



x

| |
2

y
π

30. tan−1 x
a

a
a + x2 2( )

31. sec−1 x
1

1
0

2x x
t x 12

( )
( )

−
< < >π

32. sec−1 x
a

a

x x a2 2( )−
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TABLE 1.1  (continued)
Table of Standard Derivatives

y or f(x) dy/dx or f′(x)

33. cosec−1 x 1

x x 1
|y|

2
x 1

2

2

( )−
< >





π

34. cosec
x
a

1−
1

x x a2 2( )−

35. cot−1 x 1
1 2+

<



x

|y|
2
π

36. cot−1 x
a

−
+
a

a x2 2

37. sinh x cosh x
38. sinh ax a cosh ax
39. cosh x sinh x
40. tanh x sech2 x
41. tanh ax a sech2 ax
42. coth x −cosech2 x
43. coth ax −cosech2 ax
44. sech x −sech x ⋅ tanh x
45. sech ax −a sech ax
46. cosech x −cosech x ⋅ coth x
47. cosech ax −cosech ax ⋅ cosh ax
48. sinh−1 x 1

1 2( )+ x

49. sinh−1 a
x

1

a + x2 2( )

50. cosh−1 x
1

12( )x
(y 0, x 1)2

−
> >

51. cosh−1 x
a

1

( )x a2 2−

52. tanh−1 x
1

1 2( )
( )

−
<

x
x 12

53. tanh−1 x
a

a

a x2 2( )−

54. coth−1 x
1

1 2( )
( )

−
>

x
x 12

55. coth−1 x
a

a
a x2 2( )−

56. sech−1 x −
−

< <1

1 2( )
( )

x
0 x 1

57. cosech−1 x −
+

1

x x 12( )

58. cosech
x
a

1− −
+

a

x x a2 2( )
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1.11.2 I ndefinite Integrals

All integrals, ∫f(x)dx are classed as indefinite integrals and they differ from one another by a con-
stant whose value depends upon the boundary conditions.

The following are some common integrals:

f(x) ∫f(x)dx
c (a constant) cx

xn xn+1/(n + 1) (n ≠ −1)

1/x ln x (x ≠ 0)

eax eax/(a)

ln x x ln x − x (x > 0)

ax ax/(ln a) (a > 0, a ≠ 1)

sin ax −cos ax/(a)

cos ax sin ax/(a)

tan x −ln |sec x|

Note: The constants of integration have been omitted in the above table.

Table 1.2 gives a more comprehensive list of standard indefinite integrals.

1.11.3 D etermination of an Area

Figure 1.6 depicts the area under a known curve f(x) that has been subdivided into vertical rectan-
gular strips.

	
Area A lim   f(x ) x f(x)dx

x 0
i i

a

b

i 1

i n

i

= =
→

=

=

∫∑δ
δ

	
(1.63)

The area is the summation of an infinite number of indefinitely small quantities:

	
∫ f(x) dx is the definite integral of the function f(x) between x = a and x = b
a

b

where a and b are the limits of integration.

A – B 
B – C 

y = f(x) + B

y = f(x) + C 

x 0

y

FIGURE 1.5  Definitions for integral calculus.
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TABLE 1.2
Table of Indefinite Integrals

f(x) ∫f(x) dx

1. ∫dx x x + C

2. ∫xn dx
x
n 1

C n
n 1+

+ + + ≠( )1 0

3.
 

1
x

dx∫ ln |x| + C

4.
 

1
x a dx±∫ ln |x ± a| + C

5. ∫ex dx ex + C

6. ∫enx dx
1
n

e +Cnx

7. ∫ax dx
a
lna

C (a 0, a 0)
x

+ > ≠

8. ∫anx dx
a

n . ln a
(a 0, a 0)

nx

> ≠

9. ∫ ln xdx x(ln x − 1) + C

10. ∫xenx dx
e
n

nx C
nx

2 ( )− +1

11. ∫sin x dx −cos x + C

12. ∫sin ax dx − +1
a

ax Ccos

13. ∫cos x dx sin x + C

14. ∫cos ax dx
1
a

ax Csin +

15. ∫tan x dx −ln |cos x| + C

16. ∫cot x dx ln |sin x| + C

17. ∫sin2 x dx
1
2

1
4

x 2x C− +sin

18. ∫cos 2x dx
1
2

1
4

x 2x C+ +sin

19. ∫sec 2ax dx
1
a

ax Ctan +

20. ∫cosec 2ax dx − +1
a

ax Ccot

21. 1
sin x dx∫ ln tan

x
2

C+

22. 
1

cos x
dx∫ ln tan

4
x
2

C
π +





+

23. ∫enxsin bx dx
1

2 2n b
e n . bx b . cos bx Cnx

+
− +( )

24. ∫enx cos bx dx 1
2 2n b

e n . cos bx b . sin bx Cnx

+
− +( )

25. ∫ sin−1x dx x sin x x C1− + − +1 2

26. ∫cos−1x dx x cos x x C1− + − +1 2

27. ∫sinh x dx cosh x + C

28. ∫cosh x dx sinh x + C
(continued)



12 Design Engineer’s Reference Guide

1.11.4  Approximate Integration

In an instance where the curve function is unknown, an approximate value of ∫ a

b
f(x)dx can be found 

by two methods:

	 a.	Simpson’s rule: (See Figure 1.7)

	

h
3

[y y 4(y y y ) 2(y y y )]1 n 1 2 4 6 3 5 7+ + + + + + + + ++ � �
	

(1.64)

		  where

	 h = (b − a)/n;  n = even number of strips

	 b.	Trapezoidal rule:

	
h

1
2

(y y ) y y y1 n 1 2 3 n+ + + + +





+ �
	

(1.65)

In both methods, the accuracy can be improved by increasing the number of strips.

TABLE 1.2 (continued)
Table of Indefinite Integrals

f(x) ∫f(x) dx

29. ∫ tanh x dx ln cosh x + C

30. 

1
2 2a x

dx
−∫ sin ( )− + <1 x

a
C |x| a

31. 

1
2 2a x

dx
+∫ 1

a
x
a

C1tan− +

32. 

1

x a dx2 2±∫ ln x x a C2 2+ ±( ) +

33. 
a x dx2 2−∫ 1

2
2 1x a x a

x
a

C2 2− +





+−sin

34. 

1
x a

dx2 2−∫ 1
2a

ln
x a
x a

C x a
−
+







+ >( )

y = f(x)

x

f(xi)

x = a xi x = b0

f(x)

δ

FIGURE 1.6  Determination of an area.
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		  Integration by parts:

	
u

dv
dx

dx uv
du
dx

v dx= − ∫∫ 	
(1.66)

		  Reduction formulae for trigonometric integrals:

	

sin sin
/ /

n mx dx
m 1

m
x dx= −∫ ∫ −

0

2

2

0

2π π

	

(1.67)

	

cos cos
/ /

m m

p

x dx
m 1

m
x dx= −∫ ∫ −

0

2

2

0

2π

	

(1.68)

	

sin cos sin sin
/ /

m n m 2 n mx x dx
m 1
m n

x cos x dx
n 1
m n

x= −
+ = −

+∫ ∫ −

0

2

0

2π π

  cos x dxn 2−∫
0

2π /

	

(1.69)

		  where n is an integer
		    (These results hold providing that the exponents in the reduced form are greater than −1. 

There are analogous reduction formulae with other intervals of integration (1/2 k1π, 1/2k2π) 
with k1, k2 integral.)

1.12  LAPLACE TRANSFORMS

The Laplace transform is a widely used integral transform used in many applications in engineering, 
particularly in vibration studies and control engineering. It is denoted by L{f(t)}; it is a linear opera-
tor of a function f(t) with a real argument t (t ≥ 0) that transforms f(t) to a function F(s) with complex 
argument ‘s’. There is a one-to-one correspondence in the transformation for the majority of practi-
cal uses; the most-common pairs of f(t) and F(s) are often given in tables for easy reference. The 
Laplace transform has the useful property that many relationships and operations over the original 
f(t) correspond to simpler relationships and operations over its image F(s).

It is named after Pierre-Simon Laplace, who introduced the transform in his work on probability 
theory.

Standard Laplace transforms are given in Table 1.3. The Laplace transforms of derivatives are 
as follows.

x = a

0

yn

x

h h h h h h h
x = b

y = f(x)

y1 y2 y3 y4 yn–1 yn+1

FIGURE 1.7  Method for approximation of an area using Simpson’s rule.
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1.12.1  First Derivative

	
L L

dy
dx

s {y} y(0)








= −
	

(1.70)

when y(0) is the value of y at x = 0.

1.12.2 S econd Derivative

	
L L

d y
dx

s  {y} sy(0) y (0)
2

2
2








= − − ′
	

(1.71)

when y (0) is the value of 
dy
dx

 at x 0.′ =

TABLE 1.3
Table of Standard Laplace Transforms

Function f(t) Laplace Transforms L ∫={f(t)} e f(t) dtst

0

-
¥

1. 1 1
s

2. k k
s

3. eat 1
s a−

4. sin at a
s a

d y
dx

s L y s y s y y

2 2

n

n
n n n n

+








= − − ′ − −− − −L { } ( ) ( ) ( )1 2 10 0 0�

5. cos at s
s +a2 2

6. t 1
s2

7. t2 2
3

!
s

8. tn (n = positive) n!
sn+1

9. cosh at s
s a2 2−

10. sinh at a
s a2 2−

11. e−at tn n!
s+a n+1( )

12. e−at sin ωt ω
ω

!
s a( )+ +2 2

13. e−at cos ωt s a
s a

+
+ +( )2 2ω

14. e−at cosh ωt s a
s a

+
+ +( )2 2ω

15. e−at sinh ωt ω
ω( )s a+ −2 2
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1.12.3 H igher Derivatives

	
L L

d y
dx

s  {y} s y(0) s y (0) y (0)
n

n
n n 1 n 2 n 1








= − − − −− − −′ �
	

(1.72)

1.13  PARALLEL AXIS THEOREM

The parallel axis theorem may be used to refer the moment of inertia of a rigid body about a given 
axis to an offset parallel axis which is not necessarily the centre of mass of the body. The theorem 
is also known as the Huygens–Steiner theorem. The theorem has importance when calculating the 
sectional properties of a complex section.

1.13.1 C alculation of the Moment of Inertia Using the Parallel Axis Theorem

Consider the Figure 1.8 which shows a rectangular section offset to a specified axis. It is required to 
calculate the revised moment of inertia with respect to the new axis. In this simple case, the moment 
of inertia of the rectangle about its own centroid ‘xc:xc’ will be

	
I

b . d
12c

3

=
	

(1.73)

and the area will be

	 Ac = b . d	 (1.74)

The equation for the theorem is

	
I (I Ah )xx c

2= +∑ 	
(1.75)

EXAMPLE 1.1

Using a practical problem, consider the section shown in Figure 1.9. In this example, the section is 
broken down into simple rectangular sections. It is a simple matter to construct a table to evaluate 
the properties of these sections as shown in Table 1.4.

x x

xcxc

yc

yc

b

d

Centroid of section ‘c’

Area of section ‘A’

FIGURE 1.8  Parallel axis rule for area of moments.
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From the table, it is seen that the individual moment of inertia is calculated about each section 
and the parallel axis theorem is then invoked to determine the new moment of inertia about the 
neutral axis.

The example shown is known as the ‘Area Moment of Inertia’ as it deals with the respective 
areas of the section.

	 I I AhParallel Axis Centroidal Axis
2= + 	 (1.76)

where
A is the cross-sectional area.
h is the perpendicular distance between the centroidal axis and the parallel axis.

1 2

3

10.0 mm 

N A

NA = neutral axis 

115.0 mm 

62.5 mm 56.375

85.0 mm 

FIGURE 1.9  Example ‘I’ section.

TABLE 1.4
Sectional Properties for Example 1.1

Section Number
b

(mm)
d

(mm)
A

(mm2)
y

(mm)
A . y

(mm3)

× 103

1 90.0 20.0 1800 115.0 207,000

2 20.0 85.0 1700 62.5 106,250

3 125.0 20.0 2500 10.0 25,000

ΣA = 6000 mm2 ΣAy = 338,250 mm3

Position of neutral axis: Y mm= 56 375.

Area Moment of Inertia Calculations

Section Number
I

(mm4)
h

(mm)
Ixx + (A ⋅ h2)

(mm4)

 × 103

1 3000.0 58.6 6189.403

2 12,041.7 6.1 75.818

3 4166.7 46.4 5380.768

ΣI = 19,208.3 mm4 ΣIxx = 11,645.990 mm4
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The theorem can also be used to determine the ‘Mass Moments of Inertia’

	 I Mh2= 	 (1.77)

where
	M is the mass of the body.
	h is the perpendicular distance between the centroidal axis and the parallel axis.

The ‘Mass Radius of Gyration’ of a section is a measure of the distribution of the mass in an 
object from its geometric centre and is a sign of its resistance to rotational motion.

The radius of gyration can also be referred to as an offset parallel axis in a similar manner.

	 k k h2
c

2= +2

	 (1.78)

where
	k is the radius of gyration about an axis parallel to the centroidal axis.
	kc’ is the radius of gyration about the centroidal axis.
	h is the perpendicular distance between the centroidal axis and the parallel axis.

1.14  COMPLEX NUMBERS

1.14.1 I ntroduction

When finding the solution to a quadratic equation such as

	 ax2 + bx + c = 0	 (1.79)

there will always be two solutions. In most cases, the solution will be straightforward, but in the 
case of the equation

	 x = 5x2 − 6x + 5 = 0	 (1.80)

using the standard formula

	
x

b (b 4ac)
2a

2

=
− ± −

	
(1.81)

the solution will be

	
x

6 ( 64)
10

=
± −

	
(1.82)

The solution to this equation relies on solving √(−64).
√(−64) cannot be represented by an ordinary number as there is no real number whose square is 

a negative quantity.
Now −64 can be written as −1 × 64, and from this:

	 j7 = j4 × j3 = −j

	 = − ×( )1 64( )

	 = −8  ( )1 	 (1.83)
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This still leaves one to find the solution of √(−1). This cannot be evaluated as a real number, but 
if √(−1) is represented by j, this will make the workings a lot easier.

The final solution to the quadratic therefore will be

	
x

6 j8
10

x 0.6 j0.8= ± ∴ = ±
	

(1.84)

	 ∴ = + = −x 0.6 j0.8 or x 0.6 j0.8 	 (1.85)

Now

	 j 1= − 	 (1.86)

	 ∴ = − × − = −j 1 1 12
	 (1.87)

	 j3 = j2 × j = −j	 (1.88)

	 j4 = j2 × j2 = 1	 (1.89)

	 j5 = j4 × j2 = j	 (1.90)

	 j7 = j4 × j3 = −j	 (1.91)

1.14.2  Argand Diagram

The Argand diagram was devised as a means of representing complex numbers.
Although Jean Robert Argand, a Swiss mathematician in 1806, is credited with developing the 

diagram, it was in fact described by C. Wessel earlier. The geometric representation of complex 
numbers as points in a plane made the whole idea of a complex number more acceptable. Indeed, 
this visualisation helped ‘imaginary’ and ‘complex’ numbers become more accepted in mainstream 
mathematics as a natural extension to negative numbers along the real line.

Figure 1.10 shows the diagram with the complex number z = a + jb plotted as a point with coor-
dinates (a, b). Because the real part of z is plotted on the horizontal axis of the diagram, this is often 
referred to as the ‘real axis’. The imaginary part of z is plotted on the vertical axis and this is then 
referred to as the ‘imaginary axis’.

Im
ag

in
ar

y a
xi

s

b

a Real axis

(a, b) 

z = a + jb

o 

FIGURE 1.10  Argand diagram.
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EXAMPLE 1.2

Plot the complex numbers 2 + j3, −3 + j2, −3 – j3, 3 – j4 and 5j on an Argand diagram.

Solution

This is shown in Figure 1.11.

1.14.3 M anipulation of Complex Numbers

1.14.3.1  Addition and Subtraction
The real parts and the imaginary parts of the numbers are added or subtracted separately, for 
example,

	 (3 + j4) + (5 + j2) = 8 + 6j	 (1.92)

1.14.3.2  Multiplication
Multiplication is undertaken algebraically; complex multiplication is more difficult to understand 
from either an algebraic or geometric point of view. Carrying out the algebraic operation first,

	 (3 + j2)  and  (1 + j4)	 (1.93)

each of these have two terms each and when multiplied together will result in four terms.

	 (3 + j2)(1 + j4) = 3 + 1j2 + j2 + j28	 (1.94)

The 1j2 + j2 terms will reduce to j14, which leaves the j28 term. Remember that ‘j’ was introduced 
as an abbreviation for √(−1), the square root of −1. Therefore, ‘j’ is something whose square is −1 (see 
Equation 1.87).

Thus, j28 will equal −8. The product of

	 (3 + j2)(1 + j4) = (−5 + j14)

o 

2 + j3
–3 + j2

–3 – j3

3 – j4

5

Real axis

Im
ag

in
ar

y a
xi

s

FIGURE 1.11  Argand diagram for Example 1.2.
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From this example, it is possible to arrive at a general rule for the solution of multiplying complex 
numbers.

	 (x + jy)(u + jv) = (xu – yv) + j(xv + yu)

Remember that (xu – yv) is the real part of the product and is the product of real parts minus the 
products of the imaginary parts. But (xv + yu), the imaginary part of the product, is the sum of the 
two products of one real part and the other imaginary part.

1.14.3.3  Division

Consider

	

2 j3
3 j4

+
− 	

(1.95)

Now

	

2 j3
3 j4

2 j3
3 j4

3 j4
3 j4

(2 j3)(3 j4)
(3 4 )2 2

+
− = +

− × +
+ = + +

− 	
(1.96)

	
= + + −6 8 9 12

25
j j

	
= − +6 17

25
j

	
= − +6

25
j17
25

	  = 0.24 + j0.68	 (1.97)

1.14.4 P olar Form of a Complex Number

It is sometimes convenient to express a complex number (a + jb) in a different form. From an Argand 
diagram, OP is a vector a + jb. Let r = length of the vector and θ the angle made with the axis OX 
(Figure 1.12).

Now

	 r a b r a b2 2 2 2 2= + = √ +( ) 	 (1.98)

P

xa
θ

0

j

y

FIGURE 1.12  Polar form of a complex number.
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And

	
tan

b
a

θ =

Also

	 a = r cos θ  and  b = r sin θ	 (1.99)

Since z = a + jb, this can be rewritten

	 z r cos jr sin that is, z r cos j sin = + = +θ θ θ θ( ) 	 (1.100)

This is called the ‘Polar Form’ of the complex number a + jb, where

	
r a b and( ) tan

b
a

2 2 1= + = −√ θ

EXAMPLE 1.3

Express z = 4 + j3 in polar form.

Solution

From Figure 1.13, it can be seen that

	 a.	 r2 = 42 + 32 = 16 + 9 
= 25 therefore, r = 5.

	 b.	 tanθ = 3
4

= 0.75
θ = 36.8667°
z = a + jb = r(cos θ + j sin θ)

Therefore, in this case

	 z = 5(cos 36.8667° + j sin 36.8667°)

EXAMPLE 1.4

Find the polar form of the complex number 2 + j3.

o

4

θ

3

j

r

x

y

FIGURE 1.13  Argand diagram for Example 1.3.
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Solution

First, construct a sketch diagram (see Figure 1.14).

z = 2 + j3 = r(cos θ + j sin θ)
r2 = 4 + 9 = 13
r = 3.6056

tanθ = 3
2

= 56.310°
z = 3.6056 (cos 56.310° + j sin 56.310°).

1.14.5 E xponential Form of a Complex Number

Thus far, two ways of representing a complex number have been considered, namely:

•	 Cartesian form (z = a + jb)� (1.101)
•	 Polar form (z = r[cos θ + j sinθ])� (1.102)

In this section, a third method of denoting a complex number is introduced:

•	 Exponential form (z = r . ejθ)� (1.103)
		  The exponential form is derived from the polar form; therefore:

•	 The value of ‘r’ is the same in both cases.
•	 The angle is also the same in each case (in the exponential form, the angle has to be 

in radians).

EXAMPLE 1.5

Convert the polar form 7(cos 60° + j sin 60°) into the exponential form.

Solution

Converting to exponential form 7(cos 60° + j sin 60°):

‘r’ = 7
‘θ’ = 60° (in radian form = π

3
 radians).

Therefore, in exponential form: = 7e .jπ /3

o

2

Real axis
Im

ag
in

ar
y a

xi
s

z

3
j r

x

y

FIGURE 1.14  Argand diagram for Example 1.4.
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If θ is replaced by –θ, the following will result:

	 e−jθ = cos(−θ) + j sin(−θ)

	  = cos θ – j sin θ

Summarising:

	 ejθ = (cos θ + j sin θ)

	 e−jθ = (cos θ – j sin θ)

1.15  DETERMINATES

1.15.1 I ntroduction

A determinant is an algebraic operation in which a square matrix is reduced to a numerical value 
(scalar). It has many uses, particularly in the inversion of matrices.

The notion of determinants predates matrices and linear transformations. Cardano considered 
determinants towards the end of the sixteenth century and Leibniz also studied them approximately 
100 years later.

1.15.2 D escription

A determinant is a square array of quantities (elements) to which a numerical value is assigned. 
Their use is in the analysis and solutions of systems of linear algebraic solutions. In general, the 
solutions are unmanageable when written out in length. The use of determinants helps simplify the 
expressions.

As an example of reducing linear algebraic equations to a determinant, consider the following 
simultaneous equation:

	 a11x1 + a12x2 + a13 = 0	 (1.104)

	 a22x1 + a22x2 + a23 = 0	 (1.105)

The solution is obtained in the form

	

x
(a a a a )

x
(a a a a )

1
(a a a a )

1

12 23 22 13

2

13 22 23 11 11 12 22 12⋅ ⋅ ⋅ ⋅ ⋅ ⋅− = − = − 	
(1.106)

The denominators of this solution can then be expressed in the form of determinants:

	

a   a

a   a
a a a a12 13

22 23
12 23 22 13= −⋅ ⋅

	
(1.107)

	

a   a

a   a
a a a a13 11

23 22
13 22 23 11= −⋅ ⋅

	
(1.108)

	

a   a

a   a
a a a a11 12

21 22
11 22 21 12= −⋅ ⋅

	
(1.109)
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1.15.3 D eterminant Order

The number of rows/columns in a square matrix determines the order of the determinant, that is

	

a   a

a   a
Second-order determinant11 12

21 22

=
	

(1.110)

	

a   a   a

a   a   a

a   a   a

Third-order determ
11 12 13

21 22 23

31 32 33

= iinant

	

(1.111)

	

a   a   a   a

a   a   a   a

a   a   a   a

a  

11 12 13 14

21 22 23 24

31 32 33 34

41   a   a   a

Fourth-order determinant

42 43 44

=

	

(1.112)

Consider a third-order determinant, that is, three rows and three columns:

	

Determinant Det A D

a   a   a

a   a   a

a   a   a

11 12 13

21 22 23

31 32 3

= = =

33

ij

1

3

a= ∑
	

(1.113)

The value of the determinant

	 D a (a a a a ) a (a a a a ) a (a a a a )11 22 33 23 32 12 21 33 23 31 13 21 32 22 31= − − − + − 	 (1.114)

where the signs are assigned in accordance with the following table:

	

+ − +
− + −
+ − +

      

       

      

�
�
�

Signs are associated with determinant element positions.
From the above, it is seen that elements are assigned either positive or negative signs depending 

on their position within the determinant.

1.15.4 P roperties of the Determinant

	 1.	The value of the determinant remains unchanged if rows and columns are interchanged.
	 2.	 If two rows of the determinant are interchanged, the numerical value of the determinant is 

unaltered but its sign is changed.
	 3.	 If two rows (or columns) of the determinant are identical, then the value of the determinant 

is zero.
	 4.	 If all the elements of one row (or one column) of the determinant are multiplied by ‘k’, the 

new determinant equals kΔ.
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1.15.5 M inors and Cofactors

Minor of a determinant element: Consider the fourth-order determinant shown in Equation 1.112. 
A ‘minor’ is the determinant of the square matrix formed by deleting one row and one column from 
some larger square matrix in which the determinant element is required.

	

a a a a

a a a a

a a a a

a a a a

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

The minors are calculated as follows:

	

The minor of a  = 

a   a   a

a   a   a

a   a   a
11

22 23 24

32 33 34

42 43 44

;;    The minor of a  = 

a   a   a

a   a   a

a   a
12

21 23 24

31 33 34

41 433 44

14

21 22 23

31 32 33

41

  a

  

The minor of a  = 

a   a   a

a   a   a

a    a   a42 43

This procedure is then repeated for the remaining elements in the determinant and the cofactor 
of the determinant is then made up of a matrix representing the minors of the elements. Numerical 
values are assigned to the elements and the cofactor will be a single numerical value for the 
determinant.

1.16  MATRICES

1.16.1 I ntroduction

A matrix is an array of mathematical quantities that is used in the solution of linear algebraic equa-
tions. Matrices are important in engineering, statistics, physics and so on.

The following is an example of a linear algebraic equation expressed in a matrix form

	

↓
= + +
= + +

= + +

y a x a x a x

y a x a x a x

y a x a x a

11 1 12 2 13 31

2 21 1 22 2 23 3

3 31 1 32 2 333 3x

Linear algebraic equation

Column Square Col
� ������ ������

=

uumn

y

y

y

a a a

a a a

a a a

1

2

3

11 12 13

21 22 23

31 32 33

↓ ↓ ↓ ↓













=





























x

x

x

Matrices Short-hand notation

1

2

3

� ������� ��������

≡ { } = [ ]{ }y A x

From the above, it is seen that (x) and (y) are column matrices (these are often referred to as vec-
tors) and (a) is a square matrix.

1.16.2 D efinitions

The following are the basic definitions that are used in matrix algebra.
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1.16.2.1  Square Matrix
A square matrix consists of (n) rows and (m) columns and is referred to as a matrix of order 
n × m.

	

a    a    a    a

a    a    a    a  

a    a    a

11 12 13 1n

21 22 23 2n

31 32

…
…

333 3n

n1 n2 n3 nn

   a

                        

a    a   a   a

…
� � � �

…























= [ ]A

	

(1.115)

The matrix equation can also be written as

	

y a xi ij i

i 1

n

=
=

∑

where i = 1,2,3; i is the number of rows and j the number of columns.

1.16.2.2  Row Matrix
A row matrix has one row of numbers as shown below

	 [ ] [ ]a    a    a   a A1 2 3 n… =

1.16.2.3  Column Matrix
A column matrix consists of a single column of numbers as shown below

	

a

a

a

A

1

2

n

�



















= [ ]

1.16.2.4  Diagonal Matrix

	

a 0 0

0 a 0

0 0 a

11

22

33

















1.16.2.5  Unit Matrix

	

1 0 0

0 1 0

0 0 1
















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1.16.2.6  Symmetric Matrix

	

a a

a a a

a a a

a a a
ij ji

11 12 13

12 22 23

13 23 33

=
















1.16.2.7  Skew Symmetric Matrix—That Is, Anti-Symmetric (aij = −aji)

	

 

a a

a a

a a

0

0

0

12 13

12 23

13 23

−
− −

















1.16.2.8  Null Matrix

	

 

0 0 0

0 0 0

0 0 0

















where all the elements are zero.

1.16.3 M atrix Algebra

1.16.3.1  Additions of Matrices
Addition of matrices is completed as follows:

	

[ ] [ ]

( ) ( )

A B a b[ ]

a b    a b        

.          

ij ij

11 11 12 12

+ = + =

+ + …
          .                           .

.                    .                           .

.                   .                            .

.                   .                            a b  mn mn( )+























1.16.3.2  Multiplication of Matrices
Multiplication of matrices is completed as follows:

	

            

  Square   

   

b   b   b   b

b  
11 12 13 14

21

















  b   b   b

b   b   b   b

B

a  a  a

22 23 24

31 32 33 34

11 12 13

















⇐ [ ]

aa  a  a

c    c    c   c

c    c    c   c21 22 23

11 12 13 14

21 22 23 24





















⇑ ⇑                               

       A         [ ]        C A B[ ] [ ][ ]=

For example, c11 = a11b11 + a12b21 + a13b31.
In general, [A][B] ≠ [B][A].
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1.16.3.3 � Transposition of a Matrix
Transposition of a matrix is where each row element becomes a column element and vice versa:

	

[ ] [ ]A
a   a   a

a   a   a
Transpose: A

a   a
11 12 13

21 22 23

T

11 2

=








 =

11

12 22

13 23

a   a

a   a

















1.16.3.4  Adjoint of a Matrix
Adjoint of a matrix is where the cofactors (cij) are transposed:

	

[Adj A] [C]

C  C  C

C  C  C

C  C  C

T

11 21 31

12 22 32

13 23 33

= =
















For a definition of cofactors, see Section 1.15.4 on determinants.

1.16.3.5  Inverse of a Square Matrix

	
[ ] [ ]

[ ]
[ ]

[ ]
A A

A
Det A

A
a

1
T T

= = =−

The inverse can only be defined for a square matrix. (Note: There are cases where a square matrix 
cannot be defined.)

1.16.3.6  Transformation from Cylindrical Coordinates to Cartesian Coordinates
An example of the use of matrices is the transformation of cylindrical to Cartesian coordinates in 
vector algebra. A transformation vector can be determined [A] such that the Cartesian coordinate 
{V}cart = [A]{V}cyl.

	

[ ]A

cos sin    0

sin cos 0

0 0      1

V

V

V

x

y

z

=
−





























θ θ
θ θ




=
−







cos sin 0

sin     cos      0

0        0          1

θ θ
θ θ

























=

V

V

V

V A V

R

0

Z

cart cyl{ } [ ]{ }
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Introduction to Numerical 
Methods

2.1  INTRODUCTION

Before the advent of electronic digital computers, all computing was accomplished using manual 
methods.

The aim of this introduction is to present some of the methods used in analysing practical prob-
lems arising in mechanical engineering that are not generally solvable using classical methods. 
These methods were developed prior to the development of the digital computer and have stood the 
test of time.

The basic mathematics used in numerical analysis is covered in Chapter 1.
The analysis of a physical problem will involve four basic steps:

	 1.	Development of a suitable mathematical model that realistically represents the physical 
system

	 2.	Derivation of the systems governing equations
	 3.	Solution of the governing equations
	 4.	 Interpretation of the results

While an analytical solution using classical methods will be exact, if it exists, a numerical 
method will require a number of iterations to generate a solution; this is only an approximation and 
cannot be considered to be exact by any means.

It is important to understand the errors that arise in numerical analysis, and for this reason a sepa-
rate section devoted to errors is covered in Section 2.2 and covers the difference between round-off 
errors and truncation errors.

The numerical methods will be able to solve most complex problems, and one of the advantages 
is easy programming on a computer using programs such as MATLAB®, MathCAD, Maple and 
Mathematica. All of these programs are user-friendly.

2.2  NUMERICAL METHODS FOR INTEGRATION

There may be a point where the engineer is required to calculate a definite integral that cannot be 
solved using analytical integration or it is preferred to integrate tabulated data.

The following methods may be used to solve for a definite integral:

	 1.	Manual method
	 2.	Mid-ordinate rule
	 3.	Trapezoidal rule
	 4.	Simpson’s rule
	 5.	Quadratic triangulation
	 6.	Romberg integration
	 7.	Gauss quadratic

2
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In this section, the first four methods will be considered as being the most appropriate ones for 
engineering students to understand.

2.2.1 M anual Method

This method is about the simplest to implement, where the desired curve is traced onto a piece of 
graph paper. The squares under the curve are counted where they cover more than 50% of the func-
tion as in Figure 2.1. The result may give a reasonable estimate of the area under the curve, provided 
the grid is sufficiently fine.

2.2.2 M id-Ordinate Rule

The mid-ordinate rule is also referred to as a quadrature or rectangular rule.
In this method, the area to be integrated is sub-divided into rectangles of equal width. The strips 

may be an even or odd number. In Figure 2.2, the value of A f(x)dxa
b= ∫  represents the area under 

the curve between the values x = a and x = b. As stated above, the area is divided into strips of equal 
width, w = (b − a)/n, where n is the number of strips. The height of each rectangle is measured at the 
point where the mid-point of the strip crosses the curve, that is, halfway between x = 0 and x = 1, 
that is x = 0.5. The height of the second rectangle will correspond to the ‘y’-value for x halfway 
between x1 and x2—namely, at a height of y1.5.

This procedure is continued until the mean of the final x-values, xn−1 and xn, is reached and the 
final y-value, yn−0.5.

The formula can be expressed as

	 A h(y y y y )0.5 1.5 2.5 n 0.5= + + + − 	 (2.1)

where

	
h

b a
n

= −

Purely as an exercise for those readers unfamiliar with the method, it is required to integrate the 
curve y = x2 between the values of x = 3 and x = 9. Starting with four rectangular strips, each with a 
width of four units as in Figure 2.1, it is noted that each strip crosses the curve at its mid-point and 

Equal size grid

x

y

FIGURE 2.1  Manual method of determining the area under a curve.
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the area of the strip is then computed by multiplying the length of the strip by its width. The integral 
is the sum of the total areas of the strips. Cheating a little, it is already known that the integral uses 
analytical methods:

	

y x . dx 

= 
x
3

 

= 
9
3

3
3

234 units

2

3 9

3 3

=

=

3

9

∫












− 





Returning to Figure 2.2, tabulating the results of the measured areas, Table 2.1 is constructed.

	 Total area x y y y y where x x x x 238.35 mm1 1 2 3 4 1 2 3 4
2= = = = =( ) ( )+ + + 	 (2.2)

Increasing the number of strips will increase the accuracy of the integrand.

0
0 1.0 2.0 3.0

x3.0 = 3.75 x4.5 = 5.25 x6.0 = 6.75 x7.5 = 8.25 x9.0

4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

130.0

140.0

150.0

y

y = x2

X

FIGURE 2.2  Mid-ordinate rule.



32 Design Engineer’s Reference Guide

Table 2.2 tabulates the results of a series of calculations using an increased number of segment 
widths. It is clearly seen that as the segment strip width is reduced, the values converge.

2.2.3 T rapezoidal Rule

A variant of the mid-ordinate rule is the trapezoidal rule which more closely approximates the curve 
more accurately than the mid-ordinate rule (Figure 2.3). As with the mid-ordinate rule, the number 
of strips used is immaterial; they may be an even or odd number.

The strip is made up of an element containing both a rectangle and a triangle as shown in Figure 
2.4a and b. The area of the trapezoid is obtained by adding the two areas together.

	
A y x

1
2

(y y ) x
(y y ) x

2o 1 o
o 1= ∆ − ∆ ∆+ = +

	
(2.3)

TABLE 2.1
Strip Dimensions for Figure 2.2
Number of blocks 4

Width of strip 1.5 mm

Height of strips  

y1 14.52 mm

y2 27.90 mm

y3 45.90 mm

y4 68.40 mm

TABLE 2.2
Effect on Values of Integrand with the 
Increase in Number of Strips

Number of Strips Integral Value

4 238.35

6 237.12

8 236.62

12 236.36

24 236.19

y0

y = f(x)

y1 y2 y3 y4 yn–2

xn–2 xn–1 xn = ba = x0 x1 x2 x3 x4 ∆x

yn–1 yn

FIGURE 2.3  Trapezoidal rule.
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Adding the area of n trapezoids, the following approximation is obtained:

	

f(x)dx
(y y ) x

2
(y y ) x

2
(y y ) x

2
(y y ) x

2
o 1 1 2 2 3

a

b

n 1 n≈ + ∆ + + ∆ + + ∆ + + + ∆∫ � −

	

(2.4)

This simplifies to the trapezoidal rule formula

	

f(x)dx  
x

2
(y 2y 2y 2y y )

a

b

o 1 2 n 1 n≈ + + + + +∫ ∆
� −

	

(2.5)

EXAMPLE 2.1

Using the trapezoidal rule, estimate the following expression with n = 8.

	

1 x  dx2

1

5

+∫

Solution

For n = 8, the strip size Δx will be

	
∆x = − =5 1

8
0 5.

The values of yo, y1, y2, …, y8 can now be computed as shown in Table 2.3.
Therefore,

	

1
0 5
2

2 2 3 25 2 5 2 7 25 2 10

2 13 25 2 17 2 21 25 26

1

5

+ ≈ + + + +(

+ + + + )
∫ x  dx2 .

. .

. .

which resolves to

	 ≈ 12.76 (Ans)

y1 – y0

y1

∆x ∆x

y0

(a) (b)

y0

FIGURE 2.4  (a) and (b): Trapezoidal elements.
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EXAMPLE 2.2

The results shown in Table 2.4 were measured in an experiment.

Using the trapezoidal rule, estimate y dx.
2.1

3.6

∫
Solution

By inspection, dx = 0.3.
Therefore,

	

y dx
0.3
2

(3.2 2(2.7) 2(2.9) 2(3.5) 2(4.1) 5.2)
2.1

3.6

∫ ≈ + + + + +

	 ≈ 5.22 (Ans)

In the case of the curve in Figure 2.1, the results from the trapezoidal rule will be identical to the 
mid-ordinate rule. The trapezoidal rule has the advantage where the curve is not continuous as seen 
in Figure 2.3; with the strip being made up of a rectangle and a triangle, it follows the curve more 
accurately and reduces the error even with larger strip widths.

2.2.4 S impson’s Rule

Where the trapezoidal rule is more accurate than using the mid-ordinate rule, an even better approx-
imation can be made using Simpson’s rule where parabolas are used instead of straight lines to 
approximate each part of the curve. Simpson’s rule is widely used by engineers in preference to most 
other methods of integration (see Figure 2.5).

As with the previous methods, the area under the required curve is partitioned into an even num-
ber of sub-intervals having equal widths such that:

	 {x , x , x , x , x , x }0 1 2 3 4 n+1…, 	 (2.6)

where n is an even number of strips. 
The width of each sub-interval is given by (see Figure 2.5)

	
∆x

b a
n

= −

TABLE 2.3
Measured Values Used in Example 2.1

x 1 1.5 2 2.5 3 3.5 4 4.5 5

y x= +1 2 2 3 25. 5 7 25. 10 13 25. 17 21 25. 26

TABLE 2.4
Measured Values Used in Example 2.2
x 2.1 2.4 2.7 3.0 3.3 3.6

y 3.2 2.7 2.9 3.5 4.1 5.2
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The area under the curve is given by the following formula

	
A

x
(y 4y 2y 4y 2y 4y 4y y )0 1 2 3 4 5 n 1 n≈ + + + + + + + +∆

3
� −

	
(2.7)

By way of an example to the method, consider the definite integral.

Approximate [dx/(x+1)
3

3

∫ ]  using Simpson’s rule with n = 4.

	
∆x

b a
4

= −

	  = 0.25

	 y0  =  f(a)  =  f(2)  =  0.333333

	
y f(a x f1 = + = = + =∆ ) ( . )

.
.2 25

1
2 25 1

0 307692

	
y f(a x f2 = + = = + =2 2 5

1
2 5 1

0 285714∆ ) ( . )
.

.

	
y f(a x f3 = + = = + =3 2 75

1
2 75 1

0 266667∆ ) ( . )
.

.

	
y f(b) f4 = = = + =( ) .3

1
3 1

0 25

Hence,

	

Area (x)dx
a

b

= ∫

	
≈ + + + +0 25

3
0 333333 4 0 307692 2 0 285714 4 0 266667 0 25

.
[ . ( . ) ( . ) ( . ) . ]

	  = 0.287683

The actual answer is 0.287682; therefore, the rule is in error by only 0.00036%.

y0 y1 y2 y3 y4

x n–1 x n = ba = x 0 x 1 x 2 x 3 x 4 ∆x = h

yn–1
yn

x

y

FIGURE 2.5  Simpson’s rule.



36 Design Engineer’s Reference Guide

2.3  EVALUATION OF ERRORS

From the foregoing section on solving for a definite integral, it was seen how errors arising from 
the calculation can be reduced by the choice of method, that is, mid-ordinate, triangulation or 
Simpson’s rule, and increasing the number of strips used in the calculation.

2.4  ROUND-OFF AND TRUNCATION ERRORS

Errors arising from the solution of engineering problems can occur due to several factors. The error 
may be due to

	 1.	 Incorrect assumption in the modelling technique, that is that drag force is proportional to 
the velocity of a vehicle when it is actually proportional to the square of the velocity

	 2.	Errors from mistakes in the programs themselves
	 3.	Errors in the measurement of the physical properties
	 4.	Mixing imperial units with SI units or using incorrect conversion values

In the application of numerical methods, there are two types of error that need to be considered; 
these are

	 1.	Round-off errors
	 2.	Truncation errors
	 3.	Errors arising from differentiation
	 4.	 Integration errors

2.4.1  Round-Off Errors

Round-off errors depend upon the level of precision the engineer is working to.
Consider the number 1

4 . This is represented as 0.25 in decimal format, which is an exact value, 
but a number such as 1

3 would be represented as 0.333333 recurring. The round-off error in this case 
will be 1

3 0 0 00000033− =. .333333  (the over-bar represents that the last digit is recurring).

There are other numbers that cannot be represented exactly, such as π or 2; these are known 
as transcendental numbers. They continue to infinity without repeating and therefore need to be 
approximated in calculations.

When there are calculations involving a number of decimal values that have been either rounded 
up or down, then the errors in the final calculation can become significant, and these errors need to 
be considered carefully.

2.4.2 T runcation Errors

A truncation error is defined as an error occurring when a mathematical procedure is prematurely 
terminated.

By way of an example, consider the Maclaurin series for ex

	
e x

x
2!

x
3!

x
4!

x
5!

x
2 3 4 5

≈ + + + + + +1 �
	

(2.8)

This series has an infinite number of terms but when using it to calculate ex, only a finite number 
of terms is actually considered to calculate ex.

In this example, if only the first three terms are used to calculate ex, such that:

	
e x

x
2!

x
2

≈ + +1
	

(2.9)
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A truncation error for this approximation will occur as the following terms will not be consid-
ered in the calculation.

The question is raised, how can this truncation error be controlled?
The concept of relative approximate error can be used to see how many terms need to be consid-

ered to minimise the error. It will not be solved unless an infinite number of terms are considered; 
therefore, the engineer has to be realistic and determine the minimum number of terms that have to 
be considered to give the level of accuracy that can be acceptable.

As an example, calculate e1.6 using the Maclaurin series:

	
f(x) f(0) xf (0)

x
2!

f (0)
x
3!

f (0)
2 3

= + ′ + ′′ + ′′′ +�
	

(2.10)

	
e   1 1.6

1.6
2!

1.6
2

= + + + +1 6
3

3.
!
�

	
(2.11)

Using a hand calculator, the inbuilt function gives e1.6 = 4.9530324244 to 10 decimal places.
Table 2.5 tabulates the errors resulting from the series after a certain number of elements, and 

Figure 2.6 depicts the convergence of the series e1.6 towards a finite value.
From the table, it will be seen that the error reduces as the number of terms are increased, and 

the series at element number 7 will have an error less than 1.0%.

TABLE 2.5
Truncation Errors for e1.6 Using Maclaurin Series
Number of Terms 
Considered e1.6

Relative 
Approximate Error

Absolute 
Approximation Error

1 1.00000 0.00000 —

2 2.60000 1.60000 61.53846
3 3.88000 1.28000 32.98969
4 4.56267 0.68267 14.96201
5 4.83573 0.27307 5.64685
6 4.92311 0.08738 1.77492
7 4.94642 0.02330 0.47108
8 4.95174 0.00533 0.10756
9 4.95281 0.00107 0.02151

10 4.95300 0.00019 0.00382

0
0

2

4

6

2 4 6
Number of terms

Va
lu

e o
f e

1.
6

Maclaurin series of e1.6

8 10 12

Series 1

FIGURE 2.6  Showing the convergence of e1.6 with an increase in the number of terms used.
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2.5  ERRORS ARISING FROM DIFFERENTIATION

The majority of errors that arise from differentiation occur due to the equation being ‘ill conditioned’.
As an example of ill conditioning, consider the function

	
f(x)

1
(x 1)

= −

when

	 f(1.1), f(x) = 10

	 f(1.01), f(x) = 100

and

	 f(1.001), f(x) = 1000

It is clearly seen that a small change in ‘x’ of less than 0.1 will result in a rapid change in ‘f(x)’ 
approaching 1000. Therefore, evaluating f(x) as ‘x’ approaches 1.00, f(x) will tend to ∞ making this 
type of equation very difficult to solve and will introduce errors in its solution.

Consider the equation f(x) x= . When

	 f(1.1), f(x) = 1.04880

	 f(1,01), f(x) = 1.00498

and

	 f(1.001), f(x) = 1.000499

This equation is considered well-conditioned and will yield sensible results with minimum 
errors.

2.6  INTEGRATION ERRORS

Consider the equation

	 y = x2	 (2.12)

It is required to determine the area under the curve between the values x = 3 and x = 9.
Using classical calculus for the solution, consider the integral

	

y x dx2= ⋅∫
3

9

	
(2.13)

Using classical integral calculus for the solution:

	

9
3

3
3

3 3





− 





Area = 234 units
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2.7  SERIES

The study of infinite series is important in the understanding of numerical analysis. Of particular, 
importance is the ‘power series’ for two reasons:
	 1.	The evaluation of functions and definite integrals. The subroutines used in computers and 

pocket calculators are based on series expansions for evaluating functions such as sin x and ex.
	 2.	Many numerical methods including the solution of differential equations are based on the 

Taylor series expansion of an arbitrary function.
An infinite series, in general, is an expression in the form

	 u1 + u2 + u3 + u4 + … + un	 (2.14)

where the un terms are formed in accordance with a definite rule. The partial sum of the first ‘n’ terms:

	
s = un i

i=1

n

∑
	

(2.15)

If the limit of sn as n approaches infinity exists and is finite, the series is said to converge. 
Conversely, if the limit exists but is infinite, the series diverges. Converging series is the current 
concern.

A series is said to be absolutely convergent when it remains convergent where all the terms are 
made positive. Cauchy ratio test provides a simple convergence check. The series will converge if 
the ratio:

	
R

u +1
un

n

n

=
→∞

lim
	

(2.16)

is less than 1.0 and diverges if the ratio is greater than 1.0. Additional information regarding conver-
gent series will be found in any standard calculus text.

2.8  NEWTON–RAPHSON METHOD

It often becomes necessary to solve algebraic equations of the third or higher orders as well as tran-
scendental equations. To find the roots of these equations often involves a very inefficient trial and error 
process. The method being described in this section is often known as the Newton–Raphson method, 
after I. Newton (1666) and J.R. Raphson (1690) who improved on the method.

The Newton–Raphson method is a root-finding process using the first few terms of the Taylor 
series of a function f(x) in the vicinity of a suspected root and uses an iteration procedure requiring 
an initial approximation to the solution; the approximation is improved following each iteration. It 
is a characteristic of iterative methods that minor errors at any step will usually be corrected in the 
following steps.

2.8.1 D emonstration of the Method

Consider a non-linear equation

	 f(x) = 0	 (2.17)

The Taylor series representation of f(x) in the vicinity of a point x0 is

	
f(x) f(x ) (x x )f (x)

1
2

(x x ) f (x )0 0 0
2

0= + − ′ + − ′′ +�
	

(2.18)
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If x = x1 is a solution of Equation 2.17, then f(x1) = 0 and Equation 2.18 becomes:

	
0 f(x ) (x x )f (x )

1
2

(x x ) f (x )0 1 0 0 1 0
2

0= + − ′ + − ′ +�
	

(2.19)

When the term (x1 – xo) becomes sufficiently small, powers of (x1 − xo) higher than the first can 
then be ignored and Equation 2.19 reduces to

	 0 = f(x0) + (x1 − x0)f′(x0)	 (2.20)

The solution of this equation for x1 gives the relationship which is then used to find the roots of 
Equation 2.17:

	
x x

f(x )
f (x )1 0

0

0

= − ′ 	
(2.21)

Using this expression as a recurrent relationship for determining improved values of x1, each 
based on a previous approximation x0, it is possible to evaluate the real roots of Equation 2.17 to any 
required accuracy.

When Equation 2.21 is used in this way, it is written as

	
x x

f(x )
f (x )

, n 0, 1, 2, 3,n 1 n
n

n
− = −

′
= …

	
(2.22)

The steps used in the application of Newton’s method are summarised as follows:

	 1.	Tabulate or graph f(x) versus x to find an approximate value x0 of a real root.
	 2.	This starting point can be improved by calculating a corrected value x1 from Equation 2.21.
	 3.	Successive corrections are made in the same manner using Equation 2.22.
	 4.	The solution is complete when the term f(xn)/f′(xn) has no effect on the last decimal place 

to be retained in xn+1.

EXAMPLE 2.3

The equation x3 – 3x – 4 = 0 is known to have a root at approximately x = 2. It is required to find 
a more accurate root.

Solution

Now, f(x0) = x3 – 3x − 4; therefore, f′(x) = 3x2 – 3.
A first approximation will be x0 = 2; then

	 f(x0) = f(2) = −2  and  f′(xo) = f″(2) = 9

A more improved approximation (x1) will be

	

x x
f(x )
f’(x )

x 2
( 2)

9
2.22222

1 0
0

0

1

= −

= − −

=
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Therefore,

	 x0 = 2.00000;  x1 = 2.22222

For the next iteration starting from x1

	

x

x

2

2

2 22222
0 30724

11 81479
2 19622

= −

=

.
.
.

.

A further iteration produces

	

x

x

3

3

2 19622
0 00455

11 47015
2 19582

= −

=

.
.
.

.

and a further iteration results in

	

x

x

4

4

2 19622
0 0000010361

11 46492
2 19582

= −

=

.
.

.
.

this result is similar to 5 decimal places as x4.
Hence, the required solution is 2.19582 to 5 decimal places.

It is seen that the method is simple but effective and can be repeated with each repetition or itera-
tion giving a result closer to the required root.

The method lends itself to solution using a spreadsheet.

2.9  ITERATIVE METHODS FOR SOLVING LINEAR EQUATIONS

2.9.1 G auss Elimination Method

One of the problems with using the Gauss elimination method is that it is sensitive to rounding 
errors and the method does not offer any refinement to reduce these errors. Also, when the number 
of simultaneous equations becomes large, that is, 10 or more, the process then becomes laborious.

There are two iterative techniques currently used by engineers:

	 1.	Jacobi iterative method
	 2.	Gauss–Seidel method

2.9.2  Jacobi Iterative Method

Carl Gustav Jacob Jacobi (1804–1851) developed an iterative method for matrices which will be 
studied in this section.

This method makes two assumptions:

	 1.	That the system of equations given by him has a unique solution

	

a x a x a x a x b

a x a x a x a x b

.

.

11 1 12 2 13 3 1n n 1

21 1 22 2 23 3 2n n 2

+ + + + =
+ + + + =

�
�

aa x a x a x a x b an1 1 n2 2 n3 3 nn n n+ + + + =� 	
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	 2.	And the coefficient matrix ‘A’ has no zeros on the main diagonal. If any of the diagonal 
values a11, a22, a33,…, ann are zero, then the rows or columns will need to be interchanged to 
obtain a coefficient matrix that has nonzero values on the main diagonal.

To review the Jacobi method, consider the Equation 2.23, solve the first equation for x1, the sec-
ond equation for x2 and so on, to xn as follows:	

	

x
1

a
(b a x a x a x )

x
1

a
(b a x a x a

1
11

1 12 2 13 3 1n n

2
22

2 21 1 23 3 2

= − − − −

= − − − −

�

� nn n

n
nn

n n1 1 n2 2 nn n 1

x )

:

:

x
1

a
(b a x a x a x )= − − − − −�

	

(2.24)

The next step is to make an initial approximation of the solution,

	 (x1, x2, x3, …, xn),	 (2.25)

these values of x1 are substituted into the right-hand side of the rewritten equations to obtain the first 
approximations. After this procedure has been completed, one iteration is achieved. The second 
iteration is performed in exactly the same way, but this time substituting the recalculated values for 
x1, x2 x3, …, xn into the right-hand side of the equation.

This procedure is then repeated forming a sequence of approximations until they begin to con-
verge to the actual solution. The procedure is illustrated in Example 2.4.

EXAMPLE 2.4

Use the Jacobi method to approximate the solution of the following system of linear equations.

	 12x1 − 3x2 + x3 + 4x4 = 25

	 x1 + 15x2 − 7x3 − x4 = 6

	 4x1 + x2 − 20x3 + 5x4 = −34

	 2x1 − 8x2 + x3 + 10x4 = 29

Solution

To begin, write the above equations in the following form using the rules of algebra;

	
x

1
12

(25 3x x 4x )1 2 3 4= 





+ − +

	
x

1
15

(6 x 7x x )2 1 3 4= 





− + +

	
x

1
20

(34 4x x 5x )3 1 2 4= 





+ + +

	
x

1
10

(29 2x 8x x )4 1 2 3= 





− + −
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Because the actual solution is unknown, choose as a convenient initial approximation:

	 x1 = 0, x2 = 0, x3 = 0, x4 = 0

The first approximation is

	
x

1
12

[25 3(0) (0) 4(0)] 2.083331 = 





+ − + =

	
x

1
15

[6 (0) 7(0) (0)] 0.4002 = 





− + + =

	
x3

1
20

34 4 0 0 5 0 1 700= 





+ + + =[ ( ) ( ) ( )] .

	
x

1
10

[29 2(0) 8(0) (0)] 2.9004 = 





− + − =

These values are now substituted into the right-hand side of the equations to get

	
x

1
12

[25 3(0.400) 1(700) 4(2.900)]1 = 





+ − +

	
x

1
15

[6 (0.400) 7(1.700) (2.900)]2 = 





− + +

	
x

1
20

[34 4(2.0833) (0.400) 5(2.900)]3 = 





+ + +

	
x

1
10

[29 2(2.0833) 8(0.400) (1.700)]4 = 





− + −

This procedure is continued until it is clearly seen that the values are converging. Table 2.6 
shows the results for this example after 13 iterations, where it is clearly seen that the values have 
converged after 11 iterations with a very inaccurate start value. If more accurate start values had 
been chosen, then the convergence would have been quicker.

As the last two columns in Table 2.6 are almost identical, therefore it can be concluded that 
substituting the values for x1, x2, x3 and x4 back into the original equations will result in

	 Line 1 = 24.99885,  Line 2 = 5.99914,  Line 3 = −34.00203,  Line 4 = 28.99875

If the iteration had been terminated at the tenth iteration, the results would have been

	 Line 1 = 24.98414,  Line 2 = 6.01237,  Line 3 = −33.99865,  Line 4 = 28.9612

It can be seen that increasing the number of iterations results in a more refined answer. A 
choice has to be made on how many iterations will be needed depending upon the degree of 
accuracy required.

Although these calculations have been completed by hand to five decimal places, it is possible 
that the procedure can be automated in Excel or similar programs such as MathCad.
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2.9.3 G auss–Seidel Method

Carl Friedrich Gauss (1777–1855) and Philipp L. Seidel (1821–1896) proposed a modification to the 
Jacobi method that carries their names. This method is considered no more difficult to use than the 
Jacobi method, and it often requires fewer iterations to obtain the same degree of accuracy.

With the Gauss–Seidel method, when the value for x1 is determined from the first equation, its 
value is then used in the second equation to obtain the new x2. These new values are then used in 
the third equation obtaining the new x3; this procedure is then repeated for the remaining equations.

EXAMPLE 2.5

Use the Jacobi method to approximate the solution of the following system of linear equations.

	 12x1 − 3x2 + x3 + 4x4 = 25	 (1)

	 x1 + 15x2 − 7x3 − x4 = 6	 (2)

	 4x1 + x2 − 20x3 + 5x4 = −34	 (3)

	 2x1 − 8x2 + x3 + 10x4 = 29	 (4)

As with Example 2.4, the equations are rearranged as follows:

	
x

1
12

(25 3x x 4x )1 2 3 4= 





+ − +
	

(5)

	
x

1
15

(6 x 7x x )2 1 3 4= 





− + +
	

(6)

	
x

1
20

(34 4x x 5x )3 1 2 4= 





+ + +
	

(7)

	
x

1
10

(29 2x 8x x )4 1 2 3= 





− + −
	

(8)

The procedure used for the Jacobi iteration is similar but with a small change. 
In this example taking x2 = 0, x3 = 0 and x4 = 0, a value for x1 = 2.08333 is found from substitu-

tion in Equation 5.
In Equation 6 to calculate x2, substituting the value for x1 = 2.08333 together with x3 = 0 and 

x4 = 0, a value for x2 = 0.26111 is obtained.
To calculate x3, substituting the revised value for x1 = 2.14826 and x2 = 0.26111 into Equation 7, 

the value for x3 = 2.12972 is obtained.
To calculate x4, after substituting the above values for x1, x2 and x3 into Equation 8, the value 

for x4 = 2.46626 is obtained.
From this point onwards, the iteration procedure is identical to that for the Jacobi method.
The results are shown in Table 2.7, and it will be noted that in this method the values quickly 

begin to converge on the solution. This does not always happen so quickly unless, as in this 
example, the coefficients on the main diagonal of the matrix are the largest in each row.

The results also show that using the same number of iterations as the Jacobi method, the results 
are more accurate.
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2.10  NON-LINEAR EQUATIONS

Section 2.8 introduced and demonstrated two methods for obtaining the real roots of linear equa-
tions. In this section, the procedure is extended to that of finding the roots of non-linear equations 
using two iterative procedures. The first iteration technique uses a variant of Newton’s method and 
the second is a direct iteration method.

There are a number of physical examples demonstrating non-linearity behaviour, including the 
motion of a pendulum or the electrical AC waveform, and in control theory, the behaviour of an 
aerial dish when subjected to wind gusts.

Consider the following two equations:

	 F(x, y) = 0	 (2.26a)

	 G(x, y) = 0	 (2.26b)

These two equations define a curve in the x–y plane. Let the problem be to determine the point 
or points of intersection of these two curves.

Initially as a rough guide to help understand the problem, a graph of the two equations could be 
drawn to identify the approximate co-ordinates of the points, and once they have been found, the 
accuracy may be improved using either of the two techniques discussed in this section.

2.10.1 N ewton’s Method

In Section 2.7, Newton’s method was introduced for the solution of one variable; this method can 
be adopted to a system of equations comprising several variables. As discussed in that section, the 
method is based on the Taylor series expansion of a function.

A function of two variables, F(x, y), may be expanded within the neighbourhood of a point, 
(x0, y0).

	 F(x, y) = F(x0 + α ⋅ y0 + β)

	 = F(x0, y0) + αFx (x0, y0) + βFy(x0, y0) + . . .	 (2.27)

where α and β are small increments applied to x and y. The subscripts x and y indicate partial dif-
ferentiation with respect to x and y. Hence, the notation Fx(x0, y0) indicates the partial derivative of 
F(x,y) with respect to x evaluated at x = x0 and y = y0.

Following the expansion of the original equations in this form, only the linear terms in α and β 
are retained,

	 F(x, y) = F(xo, yo) + αFx(xo, yo) + βFy (xo, yo)

	 G(x, y) = G(xo, yo) + βGx(xo, yo) + βGy (xo, yo)	 (2.28)

From Equation 2.26a,

	 F(x, y) = 0

Therefore, Equations 2.26a, 2.26b and 2.27 become:

	 αFx + βFy = −F	 (2.29)

	 αGx + βGy = −G	 (2.30)

where all the functions are evaluated at (xo, yo).



48 Design Engineer’s Reference Guide

If (xo, yo) is an initial approximation to the solution, Equation 2.23 can be used to improve the 
approximation by solving for α and β, then calculating:

	 x1 = xo + α	

	 y1 = yo + β	 (2.31)

as an improved approximation. This process can be continued until successive approximations only 
differ by a very small amount.

As in this example only two equations are considered, Cramer’s rule can be applied to solve for 
α and β at each step.

	

α =

−

−
=

−
−

=

F  F

G  G

D
b

F   F

G   G
D

where D
F   F

G   G

y

y

x

x x y

x y 	

(2.32)

When D disappears in the neighbourhood of a solution, there may be multiple solutions, several 
solutions close together or no solution at all.

EXAMPLE 2.6

Consider the following set of equations to demonstrate the method:

	 y = sin x

	 x2 + y2 = 1� (2.33)

Solution

For these equations

	

F y sinx F cosx F 1

G x y 1 G 2x G 2y
x y

2 2
x y

= − = − =
= + − = =

A plot of these equations indicate that an intersection occurs in the first quadrant close to 
x = 0.7 and y = 0.7.

	 F = 0.056	 Fx = −0.765	 Fy = 1.000

	 G = −0.020  Gx = 1.400  Gy = 1.400

Substituting in Equation 2.25

	
D

0.0984
2.471

0.0631
2.471

= − = −
−

= =
−

= −2 471 0 040 0 026. , . , .α β

From Equation 2.24, the improved approximation will be

	 x1 = 0.700 + 0.040 = 0.740

	 y1 = 0.700 − 0.026 = 0.674
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Continuing with this procedure using x1 and y1,

	 F = 0.000	 Fx = −0.738  Fy = 1.000

	 G = 0.002  Gx = 1.480	 Gy = 1.348

and

	
D        =         == −

−
= −

−
2 475

0 002
2 475

0 001
0 0015

2 47
. ,

.
.

. ,
.

.
α β

55
0 001= .

hence,

	 x2 = 0.740 − 0.001 = 0.739

	 y2 = 0.674 − 0.001 = 0.673

A further application of the procedure gives

	 x3 = 0.739

	 y3 = 0.674

For these values, F = 0.000 and G = 0.000. Therefore, to three decimal places, the solution to 
the problem is

	

x 0.739

y 0.674

=
=
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Properties of Sections 
and Figures

The figures in this chapter list the properties for both plane shapes and solid shapes that are most 
commonly used in engineering design.

The figures are in two parts:

Figure 3.1 considers the properties of plane areas.
Figure 3.2 lists the properties of solid shapes.

The equations shown are for the following:

3.1  CENTROID CX, CY, CZ

The centroid of an area is the point which is the average distance from all the points on the surface 
of the figure act.

Cx, Cy and Cz are the centroid co-ordinates.

3.2  MOMENT OF INERTIA/SECOND MOMENT OF AREA

This is a geometric property of the shape, usually associated with the cross section of a beam. It is 
an indication of the beam’s ability to resist bending: the smaller the value of the moment of inertia, 
the more the beam will deflect; and conversely, the greater the value, the less the beam will deflect 
less.

The moment of inertia will pass through the centroid of the area and this will be the datum 
axis for the section. If the axis does not pass through this datum axis, it is possible for the revised 
moment of inertia to be recalculated for the new axis position.

3.3  POLAR MOMENT OF INERTIA OF A PLANE AREA

The polar moment of inertia will relate to an axis that is perpendicular to the plane of the area.
If all of the area is considered to comprise an infinitely small number of small areas (da), then 

the polar moment of inertia will be the sum of all these areas multiplied by r2, where r is the radius 
of da from the perpendicular axis.

The polar moment of inertia is the sum of any two moments of inertia about an axis acting at 90° 
to each other in the case of a plane area:

	 J = Ixx + Iyy

where Ixx and Iyy are the moments of inertia for axes through the centroid in directions x and y.
For a plane solid, it will be the sum of any three moments of inertia, for example, where Ixx, Iyy 

and Izz are the moments of inertia for axes through the centroid ‘c’ in directions x, y and z.

	 J = Ixx + Iyy + Izz	

3
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FIGURE 3.2  (Continued) Areas, volumes, centroids and moments of inertia for solid figures.
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Statics

Statics is the study of rigid bodies that are in equilibrium and concerned with the analysis of loads 
such as a force or moment/torque acting on a physical body or system, that is, it is in a state where 
the relative positions of sub-structures do not vary over time or where the structures or sub-struc-
tures are moving at a constant velocity without any variation in that velocity.

In statics, it is assumed that the bodies are perfectly rigid without any deformation. In truth, this 
is not correct. Any physical object will deform or deflect a small amount depending on the level of 
physical force or load being applied.

These deformations are considered to be insignificant and will not affect the conditions of equi-
librium or motion and therefore can be disregarded.

A body can be considered rigid when the relative movement between its constituent parts is 
negligible.

The basic concepts of statics are

Space: The geometric region occupied by the body where its position can be described by 
linear and angular measurements relative to a prescribed co-ordinate system.

Time: This is the measure of the succession of events relative to a datum event measured in 
seconds, minutes or days.

Mass: The measure of the inertia of a body, which is resistant to a change in motion. This is 
measured in kilogrammes in the SI system of measurement.

Force: The action of an external force acting on a body such as gravitational acceleration or 
the impact of another body resulting from kinetic energy transfer.

The sections of this chapter will consider:

	 1.	Force, mass and moments
	 2.	Structures and frameworks
	 3.	Vectors and vector analysis

4.1  FORCE, MASS AND MOMENTS

Newton developed the fundamentals of mechanics in which the concepts of space, time and mass 
are absolute and independent of each other.

Newton’s first law: A particle remains at rest or continues to move in a straight line with a 
constant speed if there is no unbalanced force acting on it (resultant force = 0).

This implies that the net force or net torque on every part of the structure is zero. Therefore, 
quantities such as stress or pressure can be derived. The net force equalling zero is known as the 
first condition for equilibrium and the net torque equalling zero is known as the second condition 
for equilibrium.

For completeness, the two remaining laws are as follows:

Newton’s second law: The acceleration of a particle is proportional to the resulting force act-
ing on it and is in the direction of this force.

4
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that is

	 Force = mass × acceleration	 (4.1)

	 F = ma

Newton’s third law: The forces of action and reaction between interacting bodies are equal in 
magnitude and opposite in direction and act along the same line of action.

4.1.1 S ystem of Units

The units of measurement used in statics are as follows:

Measurement system Force Length Mass Time
SI Units Newton (N) Metre (m) Kilogram (kg) Second (s)

	 1N = (1 kg)(1 m/s2)

Hence, 1 Newton is the force required to give a mass of 1 kg an acceleration of 1 m/s2.
Weight is a force.
Consider a weight of 1 kg mass:

	 W = mg (where g is the gravitational constant).
	 W = (1 kg)(9.81 m/s2).
	 W = 9.81 N.

4.1.2  Free-Body Diagrams

A free-body diagram is a very useful method of depicting the interaction of all forces and moments 
acting on a body at a given situation. It is essentially a sketch of a body that is in equilibrium and 
entirely separated from its surroundings. Figure 4.1 shows some examples of free-body diagrams.

4.1.3  Forces and Moments

4.1.3.1  Force
A force results from one body acting on another and tends to move it in the direction of its action. 
A force can be characterised by a localised vector defined by its magnitude, direction and point of 
application. A single resultant force using the principles of vector addition as shown in Section 4.3.1 
can replace a number of forces acting at any point.

Considering Newton’s first law (above), it is clear that a body will remain at rest if the resultant 
force acting on the body is zero. This is referred to as the equilibrium condition and using the 
Cartesian co-ordinate system can be stated as follows:

	
R F 0= =∑ 	

(4.2)

or

	
F i F j F k 0x y z∑ ∑ ∑( ) ⋅ + ( ) ⋅ + ( ) ⋅ =

	
(4.3)
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This can be simplified by only considering the scalar identities. …

	
F F 0 F 0x y z= = =∑∑∑ 0

	
(4.4)

As there are three equations of equilibrium for the three-dimensional case, there can only be 
three unknowns that can be determined from these equations.

4.1.3.2  Moments
In addition, for the force having the tendency to move a body in the direction of its application, 
a force can also cause the body to rotate about an axis. The axis of the force may be any line 
which neither intersects nor is parallel to the line of action of the force. This rotational tendency 
is referred to as the moment of the force (M) and is the product of the perpendicular distance (d) 
of the line of action from the point of application of the force (F) multiplied by the magnitude of 
the force.

The moment of a force is defined in a vector form using determinant algebra (in two- and three-
dimensional cases) as

	

M Fd

 i    j    k

 d  d  d

 F  F  F

d F d F i d F dx y z

x y z

y z z y z x x= = = − ⋅ + −( ) ( FF j (d F d F ) kz x y y x) ⋅ + − ⋅

	

(4.5)

F 

W 

M 

R1 
Free-body diagram

(b)

F 
M M 

R1

F (c) (d) 

Real system 

Free-body diagram

F (a)

Real system

Fx

Fy
Free-body diagram

Real system

(e) (f) 

F 

R2

FIGURE 4.1  Examples of free-body diagrams: A cantilever beam (a and b); a beam in encastrè (c and d); 
frictionless pivot (e and f).
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	 M d F F F d F d F D Fo 1 2 3 1 2 3= + + = ⋅ + ⋅ + ⋅( )� � 	 (4.6)

Where a number of concurrent forces are applied to a point ‘P’, the combined moment caused by 
these forces will be equal to the sum of the moments of these individual forces.

4.1.3.3  Couples
When two forces have an equal magnitude ‘F’ and are parallel to the line of action but act on either 
side of the body, the body will rotate about a centre line in either a clockwise or anticlockwise 
direction. This is defined as a couple and is the magnitude of the individual force multiplied by the 
distance between the two forces. The direction of the couple is identified by the right-hand rule:

	 Couple = e ⋅ F	 (4.7)

It can also be proved that the moment of the couple is the same magnitude at any location.

4.1.3.4  Rigid-Body Equilibrium
The static equilibrium of a particle is an important concept in the study of statics. A particle is in 
equilibrium only if all the resultant forces acting upon it are equal to zero and the resultant moments 
are also equal to zero.

	
F M 0= =∑∑ 0

	
(4.8)

Therefore,

	
F F 0 F 0 M 0 M 0 M 0x y z x y z= = = = = =∑∑∑ ∑∑∑0

	
(4.9)

There are six independent equations of equilibrium. The six equations are derived from the 
free-body diagrams that show all of the applied forces and moments together with all the resulting 
reaction forces and moments. From these six equations, it is possible to solve for six unknowns. If 
there are more than six unknowns, then the system is statically indeterminate.

In the special case of a two-dimensional equilibrium, which is often applied to beams and simple 
structures, the equations for plane static equilibrium are shown below

	
F F 0 M 0x y z= = =∑∑∑ 0

	
(4.10)

4.2  STRUCTURES

A structure refers to an assembly of materials whose function is to support a load or loads, be they con-
crete, brick, metal linkages and so on. The term structure can be applied to an aircraft wing, bridge, 
building or any form where a load or force is being resisted. The component parts of a loaded structure 
are in a state of stress that is tensile, compressive or shear. The distribution of these loads or forces is 
analysed to determine which materials are most appropriate to safely support the load or forces.

Structures are classified into two basic groups:

	 1.	Framed structures
	 2.	Mass structures



61Statics

The former is manufactured from either separate linkages or plates welded or riveted together to 
form a lattice. The latter will depend upon the mass of material to provide a resistance to the load, 
such as a masonry dam to withstand the water pressure in a reservoir.

For the purposes of this discussion, only the former (framed structures) will be considered as the 
latter is more in the civil engineering domain.

In the notes that follow, the framework or trusses are considered to be manufactured from link-
ages connected to each other at pin joints that do not transmit moment forces. The connecting link-
ages can only transmit either tensile forced (ties) or compressive forces (struts). For the purposes 
of this discussion, it is assumed that the ties and struts do not experience any axial and transverse 
deflections. Figure 4.2 shows examples of pin-jointed truss structures.

Structures can be classified as either 2-dimensional (plane frames) or 3-dimensional (space 
frames).

For a 2-dimensional frame, the number of linkages (N) required with J joints will be

	 N = 2 ⋅ J − 3	 (4.11)

And for a 3-dimensional frame, the number of linkages (N) required with J joints will be

	 N = 3 ⋅ J − 6	 (4.12)

Note: It will be clear to the reader that in practice most frame joints are not pinned. The principles 
described here can be used with reasonable accuracy for a majority of frames where the ratio of the 
length of the linkage to its depth (L/d) is in excess of 10. In the case of frames that have relatively 
rigid joints and short linkages, the analysis is statically indeterminate and therefore outside the 
scope of this discussion.

(a) 

(b) 

(c) 

FIGURE 4.2  Types of truss structures. Warren truss (a); Pratt truss (b); Bailey truss (c).



62 Design Engineer’s Reference Guide

4.2.1 P in Joint

A pin joint allows the joined members to swivel as opposed to a rigid joint which does not allow 
any rotation. A rigid joint may be welded, whereas a pinned joint may be a bolt, rivet or any other 
form of swivel pin.

Figure 4.3 shows two methods of providing a pin joint.
Two important points about a pin joint are

	 1.	The connected members are free to rotate.
	 2.	The force in the member can only carry axial forces or loads.

4.2.1.1  Struts and Ties
Consider a member depicted in Figure 4.4a and b with a pin joint at each end. A pin joint cannot 
transmit rotation from one member to another as each can only push or pull on the joint along 
the direction of its length. A member subject to a tension load is known as a ‘TIE’ and is shown 
with arrows pointing inwards at each end as in Figure 4.4a. A member in compression is called a 
‘STRUT’ and is shown with arrows pointing outwards at each end as shown in Figure 4.4b.

4.2.1.2  Bow’s Notation
When several members of a structure are pinned together and the joints are in equilibrium, the 
resultant force must be zero. When all the forces are added up as vectors, they must form a closed 
polygon. If one or more of these are unknown, then it must be the vector that closes the polygon.

Consider three members joined by a pin as shown in Figure 4.5. Only one of these forces is 
known. A method known as ‘Bow’s notation’ is used to help identify and label each member 
enabling a polygon (or in this case) a triangle of forces to be drawn. The process is as follows:

	 1.	Label the spaces between each member as shown in Figure 4.5. This diagram is also known 
as a ‘space diagram’.

	 2.	Starting at any space, say ‘A’, identify each member individually by moving clockwise 
around the joint, so that the first member is identified as a–b, the next member as b–c and 
the last as c–a (in this case only).

FIGURE 4.3  (a) and (b): Types of pin joints.

Tension tie Compression strut

Pin joints Pin joints
(b)(a)

FIGURE 4.4  Ties (a) and struts (b).



63Statics

	 3.	Draw the known vector a–b in the same direction as the space diagram. The next vector b–c 
starts at ‘b’, but at the moment the length is not known; therefore, draw a line representing 
b–c. When all the vectors are added together, they must form a closed triangle; hence, c–a 
will end at ‘a’. Complete the line c–a and where the two ‘c’ lines cross, this will be the point 
‘c’ as shown in Figure 4.6.

	 4.	Finally, transferring the arrows back to the space diagram in the same direction as shown 
on the triangle of forces (Figure 4.7) where they push onto the pin joint, the member will 
be in compression and therefore will be a strut. If the arrow pulls away from the pin joint, 
the member will be in tension and is therefore a tie.

EXAMPLE 4.1

A column (strut) is held vertically by two guy ropes as shown in Figure 4.8a. The maximum allow-
able compressive force in the strut is 25 kN. Calculate the forces in each rope bearing in mind that 
the ropes can only be in tension.

B 

C 
A 

FIGURE 4.5  Bow’s notation.

a
c Line

b

c Line

FIGURE 4.6  Vector diagram.

B 

C 
A

FIGURE 4.7  Triangle of forces.

45°
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60°

B 

A C 

25 kN 

a
c Line

b

c Line

45°

30°

(b)(a) (c)

FIGURE 4.8  (a) Example 4.1, (b) Bow’s notation, and (c) vector diagram for Example 4.1.
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Solution

Following the procedure as outlined in Section 4.2.1.2, first draw the space diagram (Figure 4.8b) 
and then complete the triangle of forces (Figure 4.8c).

The forces in each of the ropes will be b–c and c–a. These forces can be found by either draw-
ing to scale or by calculation.

First, ensure that the internal angles of the triangle of forces add up to 180°. In this instance, the 
angle between vectors ac and bc will be

	 180 30 45 105° ° ° °− + =( )

	

bc
sin 45

25
sin 105°

=
°

	 bc = 18.30 kN (Tension)

and

	

ca
sin 30

 = 
25

sin 105o o

	 ca = 12.94 kN (Tension).

Figure 4.9 summarises these forces.

4.2.2 S olving Forces in Pin-Jointed Frames

There are many examples of lattice work frames that are made up of a number of pin-jointed mem-
bers such as

•	 Roof trusses
•	 Crane jibs
•	 Bridges
•	 Electrical pylons

Many of these structures use riveted or bolted joints and are not entirely free to rotate at the joint, 
but the theory for pin-jointed frames appears to work quite well. Bow’s notation is applied to each 
joint in turn and solving the forces in each member. Transferring the force directions back from the 
polygon to the framework diagram, it can then be deduced which members are struts or ties. The 
force direction at the other end of the member can then be determined, and this is what is needed to 
help solve the forces in the other pin joints.

B 

A C 

25 kN

18.301 kN 12.941 kN 

FIGURE 4.9  Summary of forces for Example 4.1.
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EXAMPLE 4.2

A pin jointed framework has a load of 250 kN applied to the joint as shown in Figure 4.10a.
Solve the forces and reactions for the framework shown.

Solution

	 1.	Draw the space diagram and then label the spaces as shown in Figure 4.10a using Bow’s 
notation.

	 2.	Solve the known joint using either drawing or trigonometry (Figure 4.10b.)

	 ac = 250 kN × sin 30° = 125.0 kN (strut)

	 bc = 250 kN × cos 30° = 216.5 kN (strut)

	 3.	Solve for the other joint (Figure 4.10c)

	 bd = 216.5 × cos 30° = 187.5 kN (R2)

	 cd = 216.5 × sin 30° = 108.25 kN

	 4.		  ad = 125 kN × sin 30°= 62.50 kN (R1)

	 cd = 125 kN × cos 30° = 108.25 kN

The reaction R2 is easily deduced as the total upward force is 250 kN. Hence, R2 = (250 kN – 
187.5 kN) = 62.50 kN. The solution for the remaining joint is not needed except for completeness: 
(see Figure 4.10d).

When the reader becomes proficient with this work, it will be found to be more convenient to 
complete this work in one diagram (see Figure 4.10e).

There are three methods for analysing frameworks:

	 1.	Method of joints
	 2.	Graphical methods
	 3.	Method of sections

R1 R2
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B

30° 60°
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216.5 kN R2
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(d) (e)

(c)

a
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125 kN

108.25 kN

R1
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b

FIGURE 4.10  (a) Example 4.2, (b) joint ABC, (c) joint CBD, (d) joint ACD and (e) combined diagram.
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4.2.3 M ethod of Joints

The method of joints is a technique for finding the internal forces within a framework and it works 
on the assumption that the framework members are pin connected, making them two force mem-
bers. Equations of static equilibrium can then be written for each pin joint and the set of equations 
can be solved simultaneously to determine the forces acting in the framework members.

The biggest problem with the ‘method of joints’ is the amount of work that has to go into calcu-
lating each member force. It may be difficult to slove just for these forces alone; instead, the solution 
may require more forces than required.

In the real world, the framework members will normally be connected using welded gusset 
plates; the idealised joint is considered as that connected by a frictionless pin.

Although there will be an error, it is normally considered acceptable when the framework mem-
bers are long and slender, that is, L/d > 10.

The steps in applying the method of joints as applied to the analysis of a plane framework are 
as follows:

	 1.	Label all the pin joints (A, B, C, … etc.).
	 2.	Draw and label a free-body diagram for the complete framework.
	 3.	Determine the reaction forces using the three equations for static equilibrium applied to 

the whole framework.
	 4.	Draw a free-body diagram for each pin assembly. This may be one free-body diagram that 

shows all the pin joint details.
	 5.	 If possible, begin solving the equilibrium equations at a joint where only two unknown 

reactions exist. Work from joint to joint using the criterion of two unknown reactions.
	 6.	Apply the two equations of static equilibrium relating to Fx and Fy, (moments are zero) at 

each joint to identify the forces in the attached members.

EXAMPLE 4.3

A truss as shown in Figure 4.11 has a force acting at the apex of the truss. Draw the free-body 
diagram and determine the forces acting within the individual links.

Solution

See Table 4.1 for the link calculations.

4.2.4 G raphical Methods as Applied to a 2-Dimensional Framework

The graphical method for the analysis of frameworks is a convenient method for simple frames and 
trusses, but as the framework becomes more complex, the method then becomes more complicated 
and cannot be used for 3-dimensional space frames.

Consider the frame in Figure 4.12.

F

B
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F

B

A C 

F

B

C Ax

Ay CyCyAy

FAB

FAC

FBC

(a) (b) (c)

C

FIGURE 4.11  (a), (b), and (c): Example 4.3.
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As with the method of joints procedure, the initial steps is to

•	 Label all the pin joints.
•	 Draw and label a free-body diagram for the whole framework.
•	 Establish the reaction forces.
•	 Draw a free-body diagram for each individual joint; this may be combined onto a single 

free-body diagram.
•	 Produce a force vector polygon for each joint starting with one having no more than two 

unknowns.
•	 The force diagrams can be combined into one single diagram [this is also known as a 

Maxwell diagram (see Figure 4.13)].

4.2.5 M ethod of Sections as Applied to a Plane Framework

The graphical method demonstrated in Section 4.2.4 can be expanded to cover more complicated 
figures such as that shown in Figure 4.14. It also can, in some cases, be used to determine the forces 
in selected bars more rapidly than using the method of joints.

F 

L1

R2R1
L2

α1 α 2

FIGURE 4.12  Basic truss frame.

TABLE 4.1
Calculated Values for Figure 4.12

Figure 4.13a Figure 4.13b Figure 4.13c

Angle A & C = 45°
AC = 1000 mm
AB = 1000x sin 45°
     = 707 mm
F = 1000 N

ΣMz = 0
Moments about A
Cyx 1000 = 1000 N × 500
Cy = 500 N

ΣFx = 0
Ax = 0

ΣFy = 0
Ay = 1000 N – Cy

   = 500 N

Joint A
Fab = 707/1000 = Ay

FAB = Ayx 1000/707
    = 707 N
FAC = FAB × 707/1000
    = 707 N

Joint B
FBC x 707/1000
  = 1000 N – FAB

707/1000 N
FBC = 707 N

Joint C
FAC = 707 N
FBC = 707 N
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The steps used in this process are similar to that used in Section 4.2.4:

	 1.	Label all pin joints—A, B, C, etc.
	 2.	Draw and label a free-body diagram covering the whole framework.
	 3.	Determine the reaction forces using the three equations for static equilibrium applied to 

the whole framework.
	 4.	Draw a free-body diagram for a selected part of the frame, which can include two joints 

breaking the bars under consideration.
	 5.	Calculate the forces in the bars to one side of the ‘cut’, again using the three equations for 

static equilibrium.

Ay = –500 N
90°

FAB

FAC

(b) 

C

F 

FBCFAB

FBC

FACFAC

B 

FAB
45°45°

CyAy

(a) 

FAB

FAC

P = 1000 N 

(c) 

FAC

Cy = 500 N FCB

90°

(d)

FAB

FBC

1000 N 

(e)

By direct measurement:
FAB = 707 N (compressive)
FBC = 707 N (compressive)
FAC = 500 N (tension)  

FIGURE 4.13  (a)–(e): Graphical method of joint analysis.
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FIGURE 4.14  Warren girder.



69Statics

Figure 4.14 shows an example of a Warren-type girder carrying a variety of loads. It is required 
for the purposes of this exercise to determine the forces in members AB and JK.

Start at a point on the frame where the forces are known (see Figure 4.15).
A cutting line is drawn through the members under consideration and a free-body diagram is 

constructed for the part of the framework to the left of the cutting line (see Figure 4.15).
The unknown forces are shown in tension.
Taking moments about joint A will eliminate forces FAJ and FAB leaving force FKJ.

Sum the moments about A to zero:

	 0 = 100(1.5)–FKJ(1.5)	 (4.13)

therefore, FKJ = 100 kN (tension).
Now taking moments about joint J which is outside the free-body diagram, this will eliminate 

FAJ and FKJ leaving only FAB.
Summing moments about J to zero:

	 0 = 50(1.5) – 14(1.8) + 33.67(1.8) + FAB(1.5)

	 = −73.60 kN (tension)

Summing moments vertically to zero, this will eliminate both FKJ and force FAB leaving FAJ.

	 0 = 33.67 – 14 – FAJ (5/7.81)

	 FAJ = +30.72 kN (tension)

	 FKA = −33.67 kN (compression)

Figure 4.16 shows a typical truss construction.

1500 mm

14 kN

1800

K

50 kN

100 kN 

33.67 kN

FAB

FAJ

Cutting line
A

FIGURE 4.15  Free-body diagram for Figure 4.14.

Gusset plates

FIGURE 4.16  Typical truss construction.
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4.3  VECTORS AND VECTOR ANALYSIS

Vector algebra is particularly important when dealing with problems involving forces, displace-
ments, velocities, accelerations, moments and so on in either two or three dimensions. These quanti-
ties have magnitude and direction that define them.

Quantities such as mass, volume, power and so on, however, have magnitude, direction is not 
involved and these are referred to as scalars.

Vectors do not obey the normal rules of addition and subtraction; they are added or subtracted 
using the Parallelogram rule.

4.3.1 V ector Addition

Consider two vectors  R
�

 and 
�
Q acting on a single point: From Figure 4.17a–c, it can be seen that 

these can be replaced by a single vector  R.
�

 By drawing lines parallel to the vectors to complete the 
parallelogram, the resultant ‘R’ is found.

In Figure 4.17c, the vector Q has been moved parallel to itself and its tail has been placed to the 
head of P, and the resultant ‘R’ is as shown. This is known as ‘triangular construction’.

The triangular rule may be applied when it is more convenient to use the parallelogram rule.
Analytically, the magnitude R of the vector R is given by

	
R P Q 2PQ cos(180 q) (cosine rule)2 2= + − −

	
(4.14)

4.3.2 V ector Subtraction

Vectors may be subtracted, that is 
� �
P Q− , by applying the rule thus: Draw 

�
P and −

�
Q and add either 

the parallelogram or triangular rules to obtain 
�
R as shown in Figure 4.18b.

4.3.3  Resolving a Vector into Components

Consider a vector 
�
P as in Figure 4.19 and determine its components.

In this example, there is a requirement to convert the vector P into its components. Px and Py are 
the rectangular components along the Cartesian axes ox and oy, and their magnitudes will be

	
P P cos and P P sinx y= =θ θ

	 (4.15)

It also follows that:

	
P P P in magnitudex y= +2 2

	
(4.16)

P 

Q 0

(a) (b) (c)

P 

Q 

R 

θ

0

P 

Q 

R 

0
R 

R = P − Q

R = P + Q

FIGURE 4.17  (a)–(c): Resultant of two forces.
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Next, consider the case where the co-ordinates are not rectangular:
Figure 4.20 shows a space diagram of a force vector and it is required to determine the respective 

forces given the directions.

4.3.4  Analytical Determination of the Components of the Vector

Figure 4.21 shows a space diagram giving the force and component directions for the following 
example:

Let

	 γ α β= − +180 ( ) 	 (4.17)

From the sine rule:

	

P
sin 

P
sin 

P
sin 

a b

γ β α= =
	

(4.18)

From which:

	
P Pa = +

sin
sin( )

β
α β 	

(4.19)

P · Q = PQ cos φ

P 

–Q

θ

(b)

P 

Q 0 

(a)

R = P − Q

FIGURE 4.18  (a) and (b): Subtracting vectors.

P
θ

x 

y 

Py

Px

(a)

0 0

P 

(b)

FIGURE 4.19  (a) and (b): Resolving co-ordinates.

P

A

B0 
P

A

B0

a 

b 

Pa

Pb

(a) (b)

Where Pa and Pb are the
required components

FIGURE 4.20  Space diagram for given force and direction.
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P Pb = +

sin
sin( )

α
α β 	

(4.20)

If the co-ordinates are rectangular as in Figure 4.19, then

	 P P sin  (vertical) and P P cos  (horizontal)a b= =β β 	 (4.21)

Note: In the majority of cases the directions 0A and 0B are perpendicular with each other in which 
case the angles α and β will be required.

4.3.5  Resultant of a Number of Coplanar Vectors (More than Two Vectors)

Note: For vectors to be concurrent a their lines of action must meet at a point.

The procedure for constructing a vector polygon is as follows (Figure 4.22):

	 1.	Establish an origin ‘0’ and from this draw P1 parallel to the given vector ‘P1’ and drawing 
the magnitude to scale.

	 2.	From the head of ‘P1’, place the tail of ‘P2’ and draw the vector ‘P2’ parallel to the given 
vector ‘P2’ and in this instance applying a triangular construction.

	 3.	Repeat this procedure for the remaining vectors.
	 4.	The resultant (R) will be given by the vector ad.

P

A

B
0

a

b

Pa

Pb

α 
β 

γ

FIGURE 4.21  Space diagram for given force and component directions.

y 

x

P1

P2

P3

P4

P5

R 
0 

c

P1

P2

P3

P4
P5

R 0 

b

a d θ

y 

x

P 

0 

Frame of reference:
P = any vector
θ = angle between
       vector and the x-axis  

(a) (b)

FIGURE 4.22  Construction of vector polygon. Given vectors (a); vector polygon (b).
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4.3.6  Analytical Solution to Figure 4.22

Resultant ‘R’

	 1.	Magnitude of vector:

	 R P sin P = ∑ + ∑( ) ( cos )θ θ2 2
	

(4.22)

		  Where

	 ∑ = + + +P sin P  sin P  sin P  sin 1 1 2 2 5 5θ θ θ θ�

	 ∑ = + + +P cos P  cos P  cos P  cos 1 1 2 2 5 5θ θ θ θ�

	 2.	Direction relative to the ‘x’-axis
		  Let

	
R P cos and R P sin x y= ∑ = ∑α α

	
α α

α=






= 





arctan arctan
sin
cos

R

R
P
P

y

x

Σ
Σ

	
(4.23)

4.3.7 P roduct of Vectors

4.3.7.1  Multiplication of a Vector ‘P’ by a Scalar ‘K’
The product of a vector with a magnitude of ‘P’ and direction ‘θ’ and a scalar is a vector increased in 
magnitude. Thus, a vector P multiplied by a scalar K will give a vector with a magnitude of KP and 
the direction remains unaltered at ‘θ’. If K is –ve, the sense of the vector is in the reversed direction.

4.3.7.2  Scalar Product of Two Vectors
	 1.	The scalar product of two vectors, as shown in Figure 4.23, is defined as the product of 

the two magnitudes times the cosine of the angle between the two vectors. The result is a 
scalar quantity. The scalar product is written with a dot between the symbols, thus:

	 2.	Scalar products are commutative:

	 A ⋅ B = B ⋅ A

	 3.	Scalar products are distributive:

	 A ⋅ (B + C) = A ⋅ B + A ⋅ C

	 4.	 If A ⋅ B = 0, then A = 0 or B = 0 or A and B are at right angles.

P · Q = PQ cos φ
P

Q

0 φ

FIGURE 4.23  Product of two vectors.
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4.3.8 V ector (or Cross) Product

	 1.	The vector product of two vectors (Figure 4.24) is defined as a vector whose magnitude is 
equal to the product of magnitudes times the sine of the angle between the vectors. The 
direction is perpendicular to the plane containing the two vectors and forms a right-handed 
system.

		    The symbol for a vector product is ∧.
		    Thus, A ∧ B = (AB sin ϕ)n, where AB sin ϕ is the magnitude and n is the unit normal 

vector to the plane containing A and B (see Figure 4.24).
	 2.	Vector products are not commutative, that is, A ∧ B ≠ B ∧ A.
		  However,

	 A ∧ B = −B ∧ A

	 3.	Vector products are distributive provided the order of the vectors is maintained.

	 A (B C) A B A C∧ + = ∧ + ∧

	 4.	 If A ∧ B = 0, then A = 0 or B = 0 or A and B are parallel.

A ^ B

B 

A 

φ

FIGURE 4.24  Vector product.
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Dynamics

5.1  KINEMATICS

Kinematic analysis is the study of the motion of a particle or body without regard to the forces that 
may be generating the motion. The motion may be either rectilinear or rotary and in mechanical 
engineering this includes the motion of linkages in mechanisms including that of robotic arms 
and so on. The definition of a mechanism in this context is rigid bodies connected by joints and 
is applied to the combination of geometric bodies that constitute a machine or part of a machine. 
They move with definite relative motions with respect to each other and are often referred to as the 
geometry of motion.

5.2  NOMENCLATURE

s	 linear displacement (m)
v	 average velocity (m/s)
a	 acceleration (m/s2)
t	 time (s)
u	 initial velocity (m/s)
v	 final velocity (m/s)
θ	 rotation angle (radians)
ω1	 initial angular velocity (rad/s)
ω2	 final angular velocity (rad/s)
η	 angular speed (rev/min)
α	 angular acceleration (rad/s2)

5.3  NEWTON’S LAWS OF MOTION (CONSTANT ACCELERATION)

In Chapter 4 (Statics), the reader was introduced to Newton’s three laws of motion. In this chapter, 
the second law is considered as a set of equations. There are four equations and these describe linear 
and angular motions.

5.3.1 L inear Motion Equations

	
s ut 

at
2

2

= +
	

(5.1)

	 v = u + at	 (5.2)

	 v2 = u2 + 2as	 (5.3)

	
s

u v
t= +



2 	

(5.4)

5
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v = 

ds
dt 	

(5.5)

	
a = 

dv
dt

 = v
dv
ds 	

(5.6)

5.3.2 � Angular Motion Equations

	
θ ω α

  t 
t
2i

2

= +
	

(5.7)

	 ωf = ωi + αt	 (5.8)

	 ω ω αθf i 22 2= + 	 (5.9)

	
θ ω ω= +





i f t
2 	

(5.10)

	
ω θ

 =  
d
dt 	

(5.11)

	
α ω ω ω

θ = 
d
dt

 = 
d
d 	

(5.12)

These laws will be expanded in the following sections.

5.4  RECTILINEAR MOTIONS

Rectilinear motion (also known as linear motion) is motion in one direction only, that is, along a 
straight line and can be described mathematically as having one spatial dimension. The motion can 
be of two types:

•	 Uniform linear motion with a constant velocity (or zero acceleration)
•	 Non-linear motion with a variable velocity (or non-zero acceleration)

The motion of a particle along a straight line can be described by its position ‘x’, which varies 
with time ‘t’. A good example of linear motion is a machine tool slide on a lathe.

5.4.1 U niform Linear Motion

Of all the motions, linear motion is the most basic and according to Newton’s first law of motion, 
providing an object does not experience any net force and will continue to carry on moving in a 
straight line at a constant velocity until it is subjected to an external force. External forces such as 
gravity and friction can cause an object to change the direction of its motion such that the motion 
therefore cannot be described as linear.

In Figure 5.1, the object travels a distance ‘s’ over a time ‘t’ at a uniform velocity.
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5.4.2 N on-Uniform Linear Motion

In linear motion where the object has a non-uniform velocity, the object’s velocity is continuously 
changing, in which case the acceleration will also be changing in a non-linear relationship. An 
example is if a body is falling to earth, it will fall with an increasing acceleration, and hence the 
object’s velocity will be varying in a non-linear manner.

Figure 5.2 shows the displacement/time curve of such a situation where the displacement ‘s’ is 
changing in accordance with a specific law and the distance travelled at a particular point can be 
determined by drawing a tangent to the curve at a time t = t1 and measuring the distance. Knowing 
the relationship between the distance ‘s’ travelled and the time ‘t’, differentiating ‘s’ with respect to 
‘t’ will result with the velocity of the object at that point.

5.4.3 V ariable Velocity

Figure 5.3 shows a curve where the linear or angular velocity is changing with respect to time. 
Differentiating with respect to time will give the linear or angular acceleration.

5.4.4 V ariable Acceleration

Consider the case where the acceleration of a body is increasing in a non-linear relationship:
Figure 5.4 depicts the relationship between acceleration ‘a’ and ‘a’ with respect to time.

t1

s, θ

α 
t2

∆t
t

s1, θ1

s2, θ2

FIGURE 5.1  Linear displacement–time.

s1, θ1

s2, θ2

t1

s, θ

Slope at t1

α
∆t

FIGURE 5.2  Variable displacement–time.

t 
t1

v1, ω1

v2, ω2

∆t
α

v, ω
Slope at t1

FIGURE 5.3  Velocity–time.
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Linear velocity:

	
v

ds
dt

s tan = = =� α
	

(5.13)

Angular velocity:

	
ω θ θ α = 

d
dt

 = tan = �
	

(5.14)

Linear acceleration:

	
a  =

dv
dt

= v = tan l � β
	

(5.15)

Angular acceleration:

	
a  = 

d
dtr
ω ω β= =� tan

	
(5.16)

5.5  CIRCULAR MOTION

5.5.1 M otion on a Circular Path

Figure 5.5 describes the motion of a particle in a circular path with ‘ω’ given:

	 v = rω	 (5.17)

	
a r

v
r

2

= =ω2

	
(5.18)

The acceleration ‘a’ is towards the centre ‘C’ and it is referred to as the centripetal acceleration.

P

C

a 

r ω
v 

FIGURE 5.5  Motion in a circular path.

t
t1

a1, α1
a2, α2

∆t
β

a, α

Slope at t1

FIGURE 5.4  Acceleration–time.
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5.5.2  Rolling Wheel

Figure 5.6a and b shows a rolling wheel.
With ‘v’ and ‘a’ given:

	
ω = v

r 	
(5.19)

	
α = a

r 	
(5.20)

At any point ‘P’ on the wheel rim:

	 vp = ωAP	 (5.21)

At the top of the wheel:

	 Velocity = 2 . v	 (5.22)

5.6  ABSOLUTE AND RELATIVE MOTION

An example of absolute motion can be explained by considering a frame of reference based on the 
earth, an individual sitting in either a motor vehicle or train carriage; the motion of the individual 
relative to the earth can then be considered absolute against other individuals or objects within the 
same frame of reference.

If the reference frame is now changed and is based upon the train carriage, when the individual 
in the train carriage decides to move along the carriage, the individual’s motion will be considered 
relative against the local reference frame.

5.7  ROTATING UNIT VECTOR

Consider a rotating unit vector e….
See Figure 5.7a:

	 e i cos jsin= +θ θ 	 (5.23)

	

di
dt

dj
dt

 (i and j are unit vectors 

                    

= = 0

   in x and y directions) 	

(5.24)

(a) (b)

vp

A

r
v a 

α, ω

AP · α

AP · ω 2

A

Acceleration is towards the point ‘A’

P
P

FIGURE 5.6  (a) A particle on a rolling wheel and (b) the vector representation of that point.
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� �e i j sin= − +θ θ θ( cos ) 	 (5.25)

See Figure 5.7b:

	
� �e = + = =θ θ θ θ ωsin cos2 2

	
(5.26)

	 e k  is in the z direction)= � …θ ω( 	 (5.27)

	
� …e xe kxj i, kxi  j= = − =( )ω

	 (5.28)

5.8  VECTOR OF POINT IN A ROTATING REFERENCE FRAME

In Figure 5.8, a point ‘P’ having a vector position ‘r’ is translating in the xy plane. ‘e1’ and ‘e2’ iden-
tify the position of the vector in respect to a reference frame that is rotating with an angular velocity 
‘ω’. ‘r1’ and ‘r2’ are components of the motion with respect to the ‘e1’ and ‘e2’ directions.

The position of the vector is expressed as follows:

	 r = r1e1 + r2e2	 (5.29)

The derivative with respect to time:

	
� � � � �r r e r e r e r e1 1 2 2 2 2= + + +1 1 	 (5.30)

	 r e r xe xr e1 1 1� = =1 1ω ω 	 (5.31)

	 r e r xe xr e2 2�2 2 2= =ω ω 	 (5.32)

y 
y1

x1

P

r2e2

r1e1

r 

x0 

FIGURE 5.8  Vector of a point in rotating the reference frame.

y

x
θ

ω = θ

e = 1

y

x
θ 

e = 1

(a) (b)
–jθ sin θ

jθ cos θ
θe

FIGURE 5.7  (a) Rotating unit vector and (b) the equivalent vector representation.
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From Equation 5.28

	

de
dt

xe,= ω

Therefore,

	
� � � �r r e r e xr e xr e1 2 2 1 1 2 2= + + +1 ω ω 	 (5.33)

	 = + +�r x r e r e1 2 21 1ω ( ) 	 (5.34)

	 = +�r x r1 ω 	 (5.35)

(r1 = rate of change of ‘r’ as measured relative to e1, e2)

	
� � �r r e r e1 21 1 2= + 	 (5.36)

5.9  VELOCITY OF A POINT IN A MOVING REFERENCE FRAME

Consider a point ‘P’ moving within a reference frame ‘xy’ as shown in Figure 5.9 having a position 
vector of

	
r rrp o= +′ 	 (5.37)

ro′ locates o′ relative to the fixed reference frame xy axes and ‘r’ locates the point ‘P’ relative to axes 
(x1, x2).

	
r r rp o= +′ 	 (5.38)

	
v r r rp p o= = +� � �′ 	 (5.39)

	
� �r r  x rr= + ω 	 (5.40)

	
� � �r r r w x rp o r= + +′ 	 (5.41)

The moving frame is not rotating, ω = 0

	
v r r rp p o r= = +� � ′ 	 (5.42)

y y1 e2 e1

x1

x

r

P

rp

ro′

FIGURE 5.9  Vector of a point.
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5.10  ACCELERATION OF A PARTICLE

Differentiating (with respect to time) the equation for velocity ‘v’ results in the equation for accel-
eration ‘a’

	
a r r rp p o= = +�� �� ��′ 	 (5.43)

Following the principles outlined above

	 r = rr + ω x r	 (5.44)

	
�� �

�
r

d
dt

r  x r
dr
dt

d
dt

 x rr
r= + = +( ) ( )ω ω

	
(5.45)

	

dr
dt

r  x rr
r r

�
�� �= + ω

	
(5.46)

	

d
dt

 x r  x r  x r  x rr( ) ( )ω ω ω ω= + +� �
	

(5.47)

	 = + +� �ω ω ω ω x r  x r  x  x rr ( ) 	 (5.48)

Therefore,

	 r r  x r x  x r  x rr r= + + +�� � �ω ω ω ω( ) 2 	 (5.49)

	
a r r  x r  x  x r  x rp o r r= + + + +�� �� � �ω ω ω ω( ) 2

	 (5.50)

	
a r rp o r= +�� ��

	 (5.51)

5.11  KINEMATICS OF RIGID BODIES IN ONE PLANE

The definition of a ‘rigid body’ is where all the internal points are fixed relative to each other. There 
are three co-ordinates required to identify the position and orientation of the body in plane motion. 
A rigid body will have three degrees of freedom in plane motion.

Further definitions:

•	 Rectilinear translation is where all the points comprising the rigid body move in a straight 
line.

•	 Curvilinear translation is where all the fixed points in the rigid body maintain the same 
orientation and remain fixed while the body moves along a curved path.

•	 Rotation about a fixed line, where all the points in a rigid body move in a circular motion 
around a fixed line.

•	 Plane motion, each point in a rigid body remains fixed to each other while moving in a path 
parallel to a fixed plane.

The equations for motion for a particle can be used to develop the plane motion of a rigid body. 
These are the same equations for the motion of a point, but as all the points are fixed relative to each 
other, the terms involving velocity and acceleration of these points relative to each other will be zero.
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The equations for velocity and acceleration where the reference axes ‘x’ and ‘y’ are fixed to a 
rigid body are as follows:

From Equation 5.37:

	 rp = ro′ + r

Point velocity:

	 v v w r (as above but terms involving r are zero).p o r= + ⋅′ �

Point acceleration:

	 a a w r w(w r) (as above but terms including r and r ap 0 r r= + ⋅ + ⋅′ � �� rre zero).

If the position of the moving reference frame is fixed such that ro′ is constant, then

	 vp = ω ⋅ r	 (5.52)

	 ap = a ⋅ r + ω(ω ⋅ r)	 (5.53)

5.12  INSTANTANEOUS CENTRE OF ROTATION

The instantaneous centre of rotation is also known as the ‘instant centre of rotation’.
For a body moving in space, the motion can be defined from its position, velocity and accelera-

tion of any point on the body. There is a point for which the instantaneous translational velocity 
is zero, which is only the rotation of the body about the point where it occurs. This is known as 
the ‘instantaneous centre of rotation’. The relative values of the linear and angular velocities will 
determine its location. When the angular velocities are near zero (i.e., near translation motion), the 
location of the instantaneous centre of rotation will be near infinity.

When the location of a point and its associated velocity and angular velocity are known: (see 
Figure 5.10a and b). The point ‘C’ will be on a line passing through ‘A’, which is normal to the direc-
tion of the velocity as shown in Figure 5.10a:

	
r

v
A

A= ω 	
(5.54)

If the location of two points and their respective velocities are known: where ‘C’ is the intersec-
tion of the lines drawn normal to the velocities of each of these points.

A vA

vB

y y

o x

rA

rB
C 

xo

rA

rB

A

vB
B 

vA

C 

(a) (b)

FIGURE 5.10  Instantaneous centre of rotation. (a) The location of two separate points and (b) coincident 
lines.
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Where the lines are coincident, the radius can be established using geometry as in Figure 
5.10b:

	
AC

AB v
v v

A

A B

= −
( )

( ) 	
(5.55)

5.13  KINEMATICS OF RIGID BODIES IN THREE DIMENSIONS

Three points are required to specify the position of a particle relative to the selected co-ordinate 
system and are identified as having three degrees of freedom. For a rigid body, the location of 
three separate points relative to a selected co-ordinate system is also required. As these points are 
relative to one another, only six independent co-ordinates are required to locate the body in a three-
dimensional space and an unrestrained rigid body is therefore said to have six degrees of freedom. 
As an example, a rigid body can be positioned by locating the position of one of the bodies (three 
co-ordinates), then positioning a line on the body (two co-ordinates) and finally identifying a rota-
tion about the line (one co-ordinate). This will sum up to six co-ordinates.

The motion of a rigid body existing in three dimensions can have a number of modes:

•	 Rectilinear translation: All points on a rigid body move in a straight line.
•	 Curvilinear translation: The relationship of all points in a rigid body remains fixed when 

the body moves along a curved path.
•	 Rotation about a fixed axis: The relationship of all points in a rigid body remains fixed 

when the body moves about a fixed axis.
•	 Rotation about a fixed point: All points in a rigid body maintain their fixed relationship 

with each other when the body moves in a circular motion about a fixed point.
•	 General motion: The rigid body motion includes translation and rotation.

Notes:

•	 If a rigid body rotates about the ‘x’ axis from position ‘A’ through an angle of π/2 and then 
proceeds to rotate about the ‘y’ axis, it will have moved to a certain position ‘B’.

•	 If the same rigid body is rotated from position ‘A’ through an angle of π/2 about the ‘y’ axis 
and further rotated π/2 about the ‘x’ axis, it will have moved to position ‘C’.

•	 Position ‘C’ will not be the same as position ‘B’. Finite rotation does not obey the same 
laws as vector addition.

5.14  THEOREMS

	 1.	Euler’s Theorem: Two component rotations about different axes passing through a point 
are equivalent to a single resultant rotation about an axis passing through the point.

	 2.	Chasles’s Theorem: Any displacement of a rigid body may be compounded from a single 
rotation about any selected point plus a translation of that point.

	 3.	Poinsot’s Central Axis Theorem: Any finite displacement of a rigid body may be 
reduced to a single rotation about an axis plus translation parallel to the same axis. This 
theorem only relates to the displacement of the rigid body and not to paths taken by the 
points.

These theorems can be applied to angular velocities.
Any rotation of a rigid body can be described by a single angular velocity plus a translational 

velocity parallel to the angular velocity vector.
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Any motion of a body about a point may be represented by a single velocity about an axis 
through that point.

Any motion of a rigid body may be represented by the velocity of a point plus the angular veloc-
ity about an axis passing through the points.

5.15  TRANSLATION MOTION

Rectilinear translation and curvilinear translation: all points on a body will move in parallel straight 
curved lines. There is no relative velocity or acceleration between any points on the body  (see 
Figure 5.11).

Position:

	 rP = rQ + rPQ	 (5.56)

Velocity:

	 vP = vQ + vPQ	 (5.57)

Acceleration:

	 aP = aQ + aPQ	 (5.58)

5.16  ROTATION ABOUT A FIXED AXIS

Rotation of a rigid body about a fixed axis is shown in Figure 5.12. The vector of the rotary motion 
has sense and direction in accordance with the right-hand rule when this is aligned with the direc-
tion of the axis. There is zero velocity due to the rotation of the axis.

Velocity:

	 vP = w ⋅ rP	 (5.59)

Acceleration:

	 a v r rP P P P= = ⋅ + ⋅� �ω ω ω( ) 	 (5.60)

z

x
y

o 

rP rPQ

rQ

P

Q

FIGURE 5.11  Rectilinear, translation and curvilinear.
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5.17  ROTATION ABOUT A FIXED POINT

Figure 5.13 shows that the rotation of a rigid body about a fixed point can always be reduced to rota-
tion of a body about an instantaneous axis of rotation.

Considering, for example, a rigid body (say a cone) which is rotating about a horizontal axis (say 
a shaft), angular velocity = ω1 and the shaft is itself rotating about a vertical axis, with an angular 
velocity = ω2.

If ω2 = 0, then the axis of rotation is the centre line of the shaft and the velocity of any point 
on the shaft is proportional to the radius (max = r) from the shaft. If the rotation about the vertical 
axis is increased to a certain value, the velocity of the shaft is proportional to ω2 x the shaft length 
(max = l) from the axis radius. If the two angular velocities are the same and the radius of the cone 
(r = l), then at any instant the velocity of the top surface of the cone is zero, that is, the top surface 
is then the instantaneous axis of rotation.

This very simplified representation illustrates the principle; if ω2 is increased, the cone represent-
ing the path of the instantaneous axis of rotation will be larger than the actual surface of the cone.

For the model illustrated, there is also a space cone, which is the path the instantaneous axis of 
rotation follows in space, that is, an inverted cone centred on the vertical axis.

For the example above, the instantaneous angular velocity of the cone will be

	 w = w1 + w2	 (5.61)

	 = w1i + w2 j	 (5.62)

In the real world, the motions and shapes are not the same as shown but the interactions between 
the body rotation on its axis, and the angular motion in space still result in an instantaneous axis of 
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FIGURE 5.13  Rotation about a fixed axis.
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FIGURE 5.12  Rotation about a fixed axis.
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rotation between an instantaneous body cone and an instantaneous space cone. The body cone may 
rotate outside or inside the space cone (see Figure 5.14).

When determining the instantaneous angular velocity, the angular acceleration ‘α’ is tangential 
to the contact point of the two cones as shown in Figure 5.14. The velocity and acceleration at any 
point are simply determined as below.

Velocity:

	 vP = ω ⋅ r	 (5.63)

Acceleration:

	  a v r r= = ⋅ + ⋅� �ω ω ω( ) 	 (5.64)

	 = α ⋅ r + ω(ωr)	 (5.65)

5.18  GENERAL MOTION

The general case of 3D motion can be reduced to translation + rotation around a fixed axis. This is 
basically a generalisation of the theorems described above.

For a body possessing linear and angular motion, it is often not possible to have an instantaneous 
axis of rotation as all the points may have non-zero velocities. The most convenient method of kine-
matic analysis of rigid bodies in 3D space is to use the principles of relative motion.

The following reference system may be either a translating or a rotating one.
A translating reference system (see Figure 5.15):
This motion simply develops the motion already studied in previous sections for particle motions.

Body cone
Space cone

m

ω

α

x
y

z

o

FIGURE 5.14  Rotation about a fixed point.
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FIGURE 5.15  Translating a reference system.
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The basic motion equations are

	 rP = rQ + r	 (5.66)

	 vP = vQ + vPQ	 (5.67)

	 aP = aQ + aPQ	 (5.68)

The above equations are sufficient if the angular velocity is zero but if this is not the case, the 
following equations for velocity and acceleration will be found to be more definitive.

Velocity:

	 v = vQ + ω ⋅ rPQ	 (5.69)

Acceleration:

	 aP = vP = vQ + ω ⋅ rPQ + ω(ω ⋅ rPQ)	 (5.70)

	  = aQ + α ⋅ rPQ + ω(ω ⋅ rPQ)	 (5.71)

A rotating reference system (see Figure 5.16):
A more general form of the relative reference axis method using the rotating reference axes. The 

reference axes x, y, z are rotating with an angular velocity of Ω. The rigid body will have a rotation 
velocity ‘ω’ as shown before.

The basic motion equations are as shown above. The expressions for velocity and acceleration of 
point ‘P’ are shown below.

The derivation is a simple extension of that provided above for 2D motion with a rotating relative 
axis with the third dimension (z) added.

Velocity:

	  
v r r rP Q PQ r= + ⋅ +� �Ω

	 (5.72)

	 = vQ + Ω ⋅ rPQ +vr	 (5.73)

Acceleration:

	 a vP P= � � (5.74)

	
= + ⋅ + ⋅ + ⋅ +� �a r r v aQ PQ PQ r rΩ Ω Ω Ω( ) 2

	
(5.75)

vr and ar = the velocity and acceleration of ‘P’ relative to the rotating x, y, z axis.

Note: Equations 5.72 through 5.75 are based on the general case where the angular velocity of the 
rigid body (ω) is different from the angular velocity of the axis (Ω). If the reference axis is fixed to 
the body, then ω will be equal to Ω and vr and ar will be equal to zero. For this case, the formula 
will be the same as for the translating reference axis as above.

ω
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FIGURE 5.16  Rotating a reference system.
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Mechanical Vibrations

6.1  INTRODUCTION

Mechanical vibrations are defined as oscillations in mechanical dynamic systems and are the 
motions of a particle or a body or system of connected bodies that have been displaced from a posi-
tion of equilibrium. The majority of vibrations are undesirable in machines or structures as they can 
result in increased stresses, causing increased wear such as fretting and increased bearing loads. 
Mechanical fatigue can also result from vibrations and rotating machine parts including aero engine 
parts and will need careful balancing in order to prevent any damage resulting from vibrations.

Although most vibration problems are undesirable, such as the Tacoma Narrow Bridge failure in 
the United States in the 1940, and innumerable airframe failures resulting from vibration-induced 
fatigue, some mechanical systems such as the Beal free-piston Stirling engine rely on the vibration 
characteristics of the system to function correctly. In the mining and quarrying industries, these rely 
on sifting different sized particles using vibrating screed beds. In the manufacturing industry, vibra-
tion conveyors are used to convey components from one machining process to another.

Vibrations can be classified into four basic categories:

	 1.	Free
	 2.	Forced
	 3.	Self-excited
	 4.	Random

Free vibration of a system is vibration that occurs in the absence of any external force.
External force acting on a system will cause forced vibrations; in this instance, the exciting force 

is continuously supplying energy to the system. These types of vibrations may be either determin-
istic or random (see Figure 6.1).

Self-excited vibrations are periodic and deterministic oscillations. Under certain conditions, the 
equilibrium state becomes unstable and any disturbances will cause the perturbations to grow until 
some effect limits any further growth. This is in contrast to force vibrations, where the exiting force is 
independent of the vibrations and can still persist even when the system is prevented from vibrating.

This chapter will concentrate on most of the aspects of vibration, ranging from simple harmonic 
free vibrations to forced vibrations.

6.2  SINGLE DEGREE OF FREEDOM: FREE VIBRATIONS

6.2.1  Free Natural Vibrations

A free vibration is one that occurs naturally without any energy being added to the vibrating system. 
The vibration is started by an input of energy but the vibrations die away over time as the energy is 
dissipated. In each case, when the body is moved away from the rest position, there is a natural force 
that will try to restore the body back to its rest position. This can be better demonstrated by con-
sidering first a pendulum which can be considered as one degree of freedom, where the pendulum 
is displaced from its rest position and allowed to swing backwards and forwards with its amplitude 
gradually diminishing as the pendulum loses energy under the influence of gravity. This can be 

6
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further demonstrated when considering a mass suspended on a tension spring hanging vertically. 
With the mass displaced vertically downwards and the spring ‘stretched’, when the mass is released 
it will continue to rise and fall until again the energy in the spring is dissipated and the mass will 
come to rest in its equilibrium position (see Figure 6.2a and b).

The motion that these two examples display is known as ‘simple harmonic motion’ or generally 
referred to as ‘SHM’.

This motion is characterised by the fact that when the displacement is plotted against time, the 
resulting graph is basically sinusoidal. The displacement can be either angular (e.g., the angle moved 
by the simple pendulum) or linear (e.g., the displacement of the mass on the spring). Although this 
study is concerned with natural vibrations, it may help to understand the nature of SHM if the forced 
vibration produced by a mechanism such as the Scotch yoke is considered.

Spring
k 
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M (kg)

Displacement
force ‘F’ 
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(b) Decay curve
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FIGURE 6.2  Deflected mass on a spring (a) and resultant vibration curve (b).
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FIGURE 6.1  (a) Deterministic and (b) random vibrations.
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6.2.2 S imple Harmonic Motion

Consider Figure 6.3 which shows a typical Scotch yoke arrangement. With the crank rotating at a 
constant ω rad/s, a pin fitted in the crank slides in the slot of the yoke and point ‘P’ on the yoke 
will oscillate up and down as it is constrained to move only in the vertical direction by the bearing 
through which it is allowed to slide. The motion of point ‘P’ is considered to be sinusoidal when 
the displacement of the yoke against the angular position of the crank is plotted against time and 
therefore by definition is SHM. The point ‘P’ moving up and down will at any instantaneous point 
have a displacement ‘x’, a velocity ‘v’ and an acceleration ‘a’.

With the pin located at radius ‘R’ from the centre of the crank, the vertical displacement of the 
pin from the horizontal centreline at any point is ‘x’. This is also the displacement of point ‘P’. The 
yoke reaches a maximum displacement equal to ‘R’ when the pin is at the top and ‘−R’ when at the 
bottom. This is the amplitude of the oscillation. If the crank is rotating at a constant ω rad/s, then 
after time t s the angle rotated will be θ = ωt radians. From the right-angled triangle (Figure 6.3b), 
x = R sin(ωt) and the graph of x against θ is shown in Figure 6.4a.

Velocity is the rate of change of distance with respect to time and in calculus form

	
v

dx
dt

=
	

(6.1)

If ‘x’ is differentiated with respect to ‘t’, the following result is found:

	
v

dx
dt

R t= = ω ωcos( )
	

(6.2)

This plot is also shown in Figure 6.4b.
The maximum velocity of the yoke is ωR and occurs when the pin in the crank passes through 

the horizontal position. Positive (+) is considered vertically upwards and negative (−) vertically 
downwards.

(b)
R

x = R sin θ = R sin (ωt)

θ

Pin

(a)

Yoke

x = R sin(ωt)
θ

ω

R

Wheel

Bearing Velocity ‘v’
acceleration ‘a’

P

FIGUE 6.3  (a) and (b): The Scotch yoke arrangement.
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Acceleration is the rate of change of velocity with respect to time and again in calculus form:

	
a

dv
dt

=
	

(6.3)

Differentiating velocity ‘v’, the following is obtained

	

x

x a
dv
dt

= × +





= +





= = −

20 50 0 3142
8

20 1 571
8

2

sin ( . )

sin .

π

π ω RR tsin ( )

sin ( . )

.

ω

=
=

20 1 9637

18 481 	 (6.4)

This plot is also shown in Figure 6.4c.
The amplitude is ω2R and this is positive at the bottom of the crank and negative at the top (when 

the yoke is about to change direction).
Now, since R sin(ωt) = x, substituting for x

	 a = −ω2x	 (6.5)

This is the usual definition of SHM and the equation states that any body that performs sinu-
soidal motion must have an acceleration that is directly proportional to the displacement and will 
always be directed to the point of zero displacement. The constant of proportionality is ω2.

Any vibrating body that has a motion that can be described in this way must vibrate with SHM 
and have the same equations for displacement, velocity and acceleration.

6.2.2.1  Angular Frequency, Frequency and Periodic Time
The angular velocity of the crank is ‘ω’ but in any vibration problem such as the mass on a spring, 
this is referred to as the angular frequency as no physical crank exists.

The frequency of the crank in revolutions/s is equivalent to the frequency of the vibration. If the 
crank is rotating at 2 rev/s, the time for one revolution is 1/2 s. If the crank is rotating at 5 rev/s, the 
time for one revolution will be 1/5 s. Hence, if the crank is rotating at f rev/s, then the time for one 
complete revolution will be 1/f. This relationship is important and gives the periodic time.

Periodic time ‘T’ is the time required to complete one cycle.

θ θ θ

x v a(a)

0

(b) (c)

180 0 180 0 180

FIGURE 6.4  Graph of the Scotch yoke rotation. (a) Displacement, (b) velocity and (c) acceleration.
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Where f is the frequency or number of cycles per second, it follows that:

	
T

f
= 1

	
(6.6)

and

	
f

T
= 1

	
(6.7)

It can be seen that each cycle of an oscillation will be equivalent to one rotation of the crank and 
one revolution is an angle of 2π radians.

Therefore, when θ = 2π, t = T. Hence, it follows that since θ = ωt, 2π = ωT. Rearranging this will 
result in ω = 2π/T. Substituting T = 1/f, therefore,

	 ω = 2πf	 (6.8)

6.2.2.2  Equations for SHM
From the three equations derived previously

	 Displacement: x = R sin(ωt)	 (6.9)

	
Velocity: v

dx
dt

R cos( t)= = ω ω
	

(6.10)

	
Acceleration: a

dv
dt

R sin t= = −ω ω2 ( )
	

(6.11)

The plots of x, v and a against the angle θ are shown in Figure 6.4a. In the calculations made so 
far, the measured angle from the horizontal position ‘θ’ was decided and concluded that the time 
was zero at this point. If the timing had been started after the angle had reached a value of ‘φ’ from 
this point, in this case ‘φ’ would be called the phase angle and be measured in radians.

The resulting equations for displacement, velocity and acceleration can then be rewritten as fol-
lows to take account of the phase angle

	 Displacement: x R sin t= +( )ω ϕ 	 (6.12)

	
Velocity: v

dx
dt

R cos t= = +ω ω ϕ( )
	

(6.13)

	
Acceleration: a

dv
dt

R sin t= = − +ω ω ϕ2 ( )
	

(6.14)

From Figure 6.4a and b, the plots of x, v and a are the same but from Figure 6.4b it will be noted 
that the vertical axis has been displaced by ‘φ’. The point to note between Figure 6.4a and b is that 
the velocity curve has been displaced by 1/4 cycle (90°) to the left, and the acceleration curve has 
been displaced a further 1/4 cycle, making it 1/2 cycle out of phase with ‘x’.
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EXAMPLE 6.1

The displacement of a body subject to an SHM is described by the following equation

	 x = R sin(ωt + φ) (from Equation 6.12)

where
R = amplitude
ω = natural frequency
φ = phase angle

Given that R = 20 mm, ω = 50 rad/s and φ = π/8.
Calculate the following:

	 1.	Frequency
	 2.	Periodic time
	 3.	Displacement, velocity and acceleration when t = T/4

Frequency:

	

f

Hz

=

=

=

ω
π

π

2
50
2
7 9577.

Periodic time:

	

T
f

s

=

=

1

0 12566.

Time (t):

	

t
T

s

=

=
4
0 03142.

Displacement (solve for t = 0.03142 s):

	

x

x

= × +





= +





=

20 50 0 3142
8

20 1 571
8

20 1 9

sin ( . )

sin .

sin ( .

π

π

6637

18 481

)

.= mm

The equations for velocity ‘v’ and acceleration ‘a’:

	

x t

v t

mm/s

= +
= +
= × ×
= −

20

20

20 50 1 9637

382 872

sin ( )

cos ( )

cos ( . )

.

ω ϕ
ω ω ϕ
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a t j

mm/s

2

= − +

= − ×

= −

20

20 50 1 9637

46 190 061

2

2

ω ωsin ( )

sin ( . )

, .

These results are confirmed in Figure 6.5.

6.2.2.3  Free Natural Vibrations of a Single-Degree-of-Freedom System
In this section, it will be shown that some simple cases of natural vibrations are extended examples 
of SHM. One important point common to all these cases is that there must be a natural force that 
causes the body to move to the rest position. One further point that is common to all the following 
examples is that the body must possess a mass (inertia) and in order to accelerate this mass an iner-
tial force or torque must be present.

6.2.2.3.1  Simple Pendulum
In this case, the restoring force is gravity. When the pendulum shown in Figure 6.6 is displaced 
through an angle ‘θ’, the weight will try to restore it to the rest position. This analysis is based on a 
moment of force (torque).

Note: Mass is indicated as ‘M’. This should not be confused with ‘m’, which is being used as an 
abbreviation for metre.

Restoring force:
Weight = Mg
Torque = T ⋅ g = weight × Mg(L sin θ)
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FIGURE 6.5  Figure for Example 6.1. (a) Displacement, (b) velocity and (c) acceleration.
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L sin θ Weight = Mg

FIGURE 6.6  Simple pendulum.
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Inertia torque:
As the pendulum has an angular acceleration ‘α’ as the pendulum slows down and then speeds up, 
it requires an inertial force to produce this effect. Tj denotes this torque.

From Newton’s second law for angular motion, Tj = Iα, where α is the angular acceleration and 
I is the moment of inertia.

It is assumed that the mass is concentrated at radius ‘L’ from the pivot point and the moment of 
inertia is then I = ML2.

Balance of moments:
If there is no applied torque from any external source acting on the mass, then the total torque acting 
on the body must equal zero, that is,

	

T
f

 s

=

=

1

0 0498.

The sine of small angles is very similar to the angle itself in radians. The smaller the angle, the 
more accurate it becomes. In such cases, sin(θ) = θ radians; therefore, this expression can be simpli-
fied to

	

g L

g
L

α α

α θ

= −

= −



 	

(6.15)

This expression meets the requirements for SHM since the acceleration ‘α’ is directly propor-
tional to the displacement ‘θ’ and the minus sign indicates that the mass is always accelerating 
towards the rest position. It follows that the constant of proportionality is (g/L), that is,

	
ω ω2 = 





g
L

 =
g
L

,

1
2

	

(6.16)

If this displacement ‘θ’ is plotted against time ‘t’, similar graphs as shown in Figure 6.4a and b 
will result. The displacement in this example is angle and is not to be confused with the angle on 
the Scotch yoke. The frequency of oscillation is obtained from

	
f = ω

π2

Hence

	
f

g
L

= 1
2π 	

(6.17)

It will be noted that mass does not enter into the equation for frequency. On the earth, the only 
way to alter the frequency is to alter the length ‘L’.

Please remember that the above equations are valid only if the pendulum swings through a small 
angle. If the angle is large, the motion will not be a perfect SHM.
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EXAMPLE 6.2

A mass is suspended by a string 60 mm long. It is nudged so that it makes a small swinging oscil-
lation. Determine the frequency and the periodic time of the swing.

	

f
g
L

f

Hz

= 











= 



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


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=
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2

1
2

9 81
0 06

20 085

1
2

1
2

π

π .
.

.

	

T
f

s

=

=

1

0 0498.

6.2.2.4  Elementary Parts of a Vibrating System
Up to now, a simplified introduction to SHM has been considered. Taking a more academic approach 
to a vibrating system that consists of a spring (a means of storing potential energy), a mass or inertia 
(a means of storing kinetic energy) and a damper (a means by which energy is gradually lost from 
the system), this is as shown in Figure 6.7. An undamped vibrating system will involve the transfer 
of potential energy to kinetic energy and kinetic energy back to potential energy.

In a damped vibrating system, some energy is dissipated in each cycle of vibration and will 
require to be replaced by an external force if a steady state of vibration is to be maintained.

6.2.2.5  Linear Elastic Oscillations
The majority of natural oscillations will occur due to the restoring force due to a spring. The spring 
can be considered to be an elastic body supporting a mass. The spring can be any structural member 
of a discrete length and does not have to be a helical spring (either tension or compression) in the 
literal sense. Although a helical spring is shown diagrammatically, it represents any elastic member 
that has a spring stiffness ‘k’ and will either extend or compress, twist or bend under a specific load.

Consider a mass suspended on a spring as shown in Figure 6.8. The mass is subject to a force ‘F’ 
which displaces the mass downwards. The spring is extended by a distance ‘xo’ and this is called 
the initial displacement.

If the force is removed, the mass will begin to oscillate up and down with an SHM.
Let Fs = spring force that tries to return the mass to its original rest position. From spring theory

	 Fs = kx

0

Excitation force
F(t) 

Damper
c

Spring
k

Mass
M

Displacement x

Static
equilibrium
position

FIGURE 6.7  Elementary parts of a vibrating system.
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As the motion of the mass has an acceleration when released, an inertial force ‘Fi’ is present.
From Newton’s second law of motion

	 Fi = Ma (mass × acceleration)

Therefore, balancing the forces acting on the mass gives

	 F = Fi + Fs = Ma + kx

If the mass is physically disturbed and released so that it is oscillating freely, the applied force is 
obviously zero and this is the requirement for oscillation to be free and natural; hence,

	 0 = ma + kx,

rearranging the equation for ‘a’:

	
a

k
M

x= −





⋅
	

(6.18)

Thus, this is the equation for SHM where the acceleration is directly proportional to the displace-
ment and is directed towards the rest position of the mass.

If the displacement ‘x’ is plotted against time ‘t’, a sinusoidal graph would result. The constant 
of proportionality k/M is the square of the angular frequency so

	
ω = k

M 	
(6.19)

The frequency of oscillation will be

	

f

k
M

=

=

ω
π

π

2

1
2 	

(6.20)

As this is a natural oscillation, the frequency is generally denoted as ωn and fn. This equation is 
true for all elastic oscillations.

Spring
k  

Mass
M (kg)

Displacement
force ‘F’

Rest position
xo 

FIGURE 6.8  Mass suspended on a spring.
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EXAMPLE 6.3

A spring having a stiffness of 20 kN/m supports a mass of 4 kg. The mass is displaced 8 mm verti-
cally downwards and then released to produce linear oscillations.

Calculate the frequency and the periodic time and the displacement, velocity and acceleration 
0.05 s after the mass has been released.

	

ωn
k
M

 N/m
kg

rad/s

=

= ×

=

20 10
4

70 71

3

.

	

f

Hz

n
n=

=

ω
π2

11 25.

	

T
f

s
n

=

=

1

0 089.

The oscillations start at the bottom of the cycle so xo = −8.0 mm and the resulting graph of x 
against time will therefore be a negative cosine curve with an amplitude of 8.0 mm.

The equations that describe the motion are as follows:

	 x = xo cos ωt (when t = 0.05 s,x = − 8.0 cos (70.71 × 0.05))

	 x = 7.387 mm (Note: Angles are expressed in radians)

To obtain the expression for velocity, the expression displacement is differentiated once

	

v x t

v  

mm/s

o= − ⋅ ⋅
= − − ×
= −

ω ωsin

. ( . ) sin ( . . )70 71 8 0 70 71 0 05

217

Differentiating the displacement equation a second time will give the equation for acceleration, 
that is,

	

a x t since x = x cos t a x

a 70.712 7.387

36,934.

o o
2= − = −

= − ×

= −

ω ω ω ω2 cos

33 mm/s2

Figure 6.9a through c confirms these results.

6.2.2.6  Transverse Vibrations
A transverse vibration is where the motion is normal to the length. This generally occurs in beams and 
shafts and may be solved by either an angular or linear motion. In this section, a linear motion is used.

6.2.2.6.1  Cantilever
Consider a mass at the end of a cantilever beam as in Figure 6.10. If the mass is displaced at right 
angles to the beam, the beam will bend and using the beam deflection equations, it will be found 
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that the force is directly proportional to displacement for small beam deflections. If the beam deflec-
tions become large, then the constant of proportionality will fail.

The cantilever can be considered as a simple transverse spring.
The stiffness of the beam can be calculated using the beam theory where the deflection of the 

cantilever due to a point load acting at the end of the beam is given by

	
y

Fl
EI

=
3

3 	
(6.21)

In a beam equation, ‘y’ is used to denote the deflection of the beam since ‘x’ has already been 
used. In the studies, thus far ‘x’ has been used to denote the deflection; therefore, ‘x’ will be used 
for future deflections.

Therefore, Equation 6.21 will be rewritten as

	
x

Fl
EI

=
3

3 	
(6.22)

Hence, the stiffness will be

	

k
F
x
EI
l

=

= 3
3

	

(6.23)

It can be shown that the theory is the same as for a mass on the end of a spring:

	
f

k
Mn = 1

2π 	
(6.24)

M

x

Force

Vibration

∆F

∆xFo
rc

e ‘
F’

Deflection ‘x’

FIGURE 6.10  Cantilever beam with a mass at the free end.
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FIGURE 6.9  (a), (b), and (c): Example 6.3.
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= 1

2
3

3π
EI

Ml 	
(6.25)

6.2.2.6.2  Simply Supported Beam
Evaluating the deflection of a simply supported beam with a point load acting mid-span, the central 
deflection will be (see Figure 6.10)

	
x

Fl
EI

=
3

48 	
(6.26)

and it follows that:

	
k

EI
l

= 48
3 	

(6.27)

and

	
f

EI
Mln = 1

2
48

3π 	
(6.28)

6.2.2.6.3  Static Deflection
The stiffness can also be found by measuring the static deflection of the beam. Assuming that the 
mass deflects a small distance ‘xs’ under its own weight, the force in this case is the weight; hence,

	 F = Mg	 (6.29)

It follows that:

	
k

Mg
xs

=
	

(6.30)

	
f

k
Mn = 1

2π 	
(6.31)

and

	
= 1

2π
g
xs 	

(6.32)

This formula will work both for a cantilever and a simply supported beam. It may be noted that 
none of the foregoing calculations have considered the mass of the beam or shaft and provided this 
is small in comparison to the concentrated mass, the formula will give an accurate answer.

Later work will consider beams and shafts where the mass of the beam and shaft is significant 
in comparison with the load.

EXAMPLE 6.4

Consider a rod 20.0 mm in diameter and 1200 mm long is rigidly fixed at one end and having 
a mass of 2 kg acting at the free end. Ignoring the weight of the rod, calculate the frequency of 
transverse vibrations. Take E = 200 GPa.
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Second moment of area for the circular section

	

I
D

m

=

= ×

= × −

π

π

.

.

.

4

9 4

64
0 024
64

7 854 10 	 (6.33)

	

f
EI

Ml

Hz

n =

= × × × ×
×

=

−

1
2

3

1
2

3 200 10 7 854 10
2 1 23

5 88

3

9 9

π

π
.

.
. 	 (6.34)

EXAMPLE 6.5

A horizontal shaft sitting in simple bearings has a mass of 40 kg placed at mid-span. There is a 
deflection of 1.00 mm due to the mass. Ignoring the mass of the shaft, determine the frequency of 
transverse oscillation (g = 9.81 m/s2).

	

f
g
x

Hz

n
n

=

=

=

1
2

1
2

9 81
0 001

15 76

π

π
.

.
.

6.2.2.7  Energy Methods (Rayleigh)
A method for solving complex oscillations for a mass–spring system was developed by Rayleigh and 
is based on that. During an oscillation, the maximum kinetic energy of the oscillating mass is equal 
to the maximum strain energy. This is best illustrated by referring to Figure 6.11.

Let the maximum deflection of the mass be xo.
The spring force will be F = kxo.

Mass
M (kg)

Spring stiffness
k (N/m) 

Displacement
force ‘F’

Rest position
xo

FIGURE 6.11  Rayleigh’s method for transverse oscillations.
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The work done F x

k x

o

o

=

=

1
2
1
2

2

	
(6.35)

Let the displacement at any time be

	 x = xo sin ωt	 (6.36)

The velocity will be

	 v = ωxo cos ωt	 (6.37)

The maximum velocity will be ω ⋅ xo.

 
The maximum kinetic energy Mv= 1

2
2

�
(6.38)

	
KE M xmax o= 1

2
2 2ω

	
(6.39)

Equating energy and ( )1 2 2 2/ M xoω

	
ω2 = k

M 	
(6.40)

It is important to point out that this result is independent of the deflection (xo). This method is 
particularly useful for determining the frequency of transverse oscillations.

EXAMPLE 6.6

Consider the shaft depicted in Figure 6.12.
It is required to establish the natural frequency of the shaft, ignoring the mass of the shaft.
Take the flexural stiffness as EI = 20,300 N ⋅ m2.
The solution to this problem can be derived using two different methods:

	 1.	Static deflection method
	 2.	Strain energy method

In this instance, the strain energy method will be used for the solution.
Determine the reactions RA and RB.

RA

RC

1.00 m 0.50 m

A B C D

20 kg (196.2 N)

0.58 m 0.42 m

FIGURE 6.12  Shaft in Example 6.6.
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Taking moments about RA:

	 1.5 × 196.2 = 1.0 × RC

	 RC = 294.3 N (down).

Taking moments about RC:

	 1.00 RA = 0.50 × 196.2
	 RC = −98.1 N (up).

Strain energy for section ‘A’ to ‘C’:

	

U
EI

M dx

x dx

x

=

=
×

−

=
×











∫
∫

1
2

1
2 20 300

98 1

98 1
2 20 300 3

2

2

0

1

2 3

,
( . )

.
,

00

1

0 079= .  J 	 (6.41)

Strain energy for section ‘C’ to ‘B’:
This will be simplified if ‘x’ is measured from the free end where M = 196.2 x.

	

U
1

2EI
M dx

1
2 20,300

( 196.2x) dx

196.2
2 20,300

x
3

2

2

0

0.51

2 3

=

=
×

−

=
×



∫
∫









=
0

0.5

0.0395 J

The total strain energy ‘U’ = 0.079 + 0.0395 = 0.1185 J.
Let the deflection produced at the free end be ym.
The strain energy

	

U F y

F Mg

 kg g

N

m=

=
= ×
=

1
2

20

196 2. 	 (6.42)

Hence,

	

y 2
0.1185
196.2

0.0012 m

m = ×

=

Now if the mass is oscillating up and down sinusoidally

	 y = ym sin ωt	 (6.43)
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The velocity of the oscillation will be

	 v = ω ym cos (ωt)	 (6.44)

The kinetic energy will be

	
KE

Mv= 1
2 2

2

	 (6.45)

	
= { }1

2
2

M  y tmω ωcos( )
	 (6.46)

The maximum value of KE can be calculated as follows:
Now ym is the deflection at the free end of the shaft.

	 = 0.0021 m, M = 20 kg

Equating energies

	

1
2

M  ym{ } .ω 2 0 1185=

	 10 0 0021 0 11852 2ω ( ). .=

	

ω2
2

0 1185
10 0 0021

8229

=

=

.
{ ( . )}

	 ω = 90.71 rad/ s

	

f

Hz

n =

=

90 71
2

14 43

.
( )

.
π

The static deflection of the shaft could have been determined using the beam theory.

6.3  DAMPED VIBRATIONS

This section covers the theory of natural vibrations with damping. In Section 6.2, it was inti-
mated that once a system was set to vibrate naturally, it would carry on vibrating as the energy 
that had been put into the system by the initial disturbance has no way of escaping the system. 
In practice, the vibrations will gradually reduce in amplitude and die away over a period of time. 
Figure 6.13 shows the response of a system to varying degrees of damping following an initial 
displacement ‘A’.

The definition of damping is where the free vibration of a system is controlled. A system that is 
critically damped returns to its stable reference position as quickly as possible without any under- or 
overshoot. A good example is the machine gun when the recoil mechanism of a gun is designed 
with critical damping such that the system returns to its firing position in the quickest time without 
any overshoot. A further example is the automotive suspension system where the vehicle passes 
over an obstacle and returns the vehicle to its correct ride height as quickly as possible without any 
undesirable undershoot.
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Damping can be accomplished by a number of methods including

	 1.	Viscous damping
	 2.	Coulomb damping (dry friction)
	 3.	 Inertial damping
	 4.	 Internal damping

The basic nomenclature used in damping is covered in Table 6.1. Table 6.2 tabulates the natural 
frequencies and coefficients ‘K’ for various modes.

6.3.1 V iscous Damping

Damping that uses a fluid to provide the damping force is known as viscous damping.
Figure 6.14a and b shows two types of viscous dampers. These kinds of dampers are also known 

as dashpots. In Figure 6.14a, the dashpot uses a fluid (usually oil) and the piston has a number of 
small orifices passing through the piston. These holes are sized so that the fluid is restricted when it 

TABLE 6.1
Nomenclature Used in Forced Vibrations

Symbol Description Units

L =  Length m

m =  Mass per unit length kg/m

I =  Area moment of inertia m4

g =  Acceleration due to gravity (9.81 m/s2) m/s2

E =  Modulus of elasticity N/m2

G =  Torsional modulus N/m2

f =  Frequency of vibration Hz

y =  Deflection m

k =  Radius of gyration m

J =  Shaft polar moment of inertia m4

s =  Shaft torsional stiffness (GJ/L) Nm ⋅ rad

A
m

pl
itu

de

A

O
Time ‘t’

Critical damping ζ = 1.0

Critical damping ζ = 0.5

Light damping ζ = 0.1

FIGURE 6.13  Damping following an initial displacement ‘A’.
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TABLE 6.2
Natural Frequencies and Coefficients ‘K’ for Various Modes

Case Graphic Equation Harmonic Mode

1 m = mass/unit

L

Simply supported beam

f
K

L
E I
m

=
⋅ ⋅

⋅
2 2π

Mode 1 2 3 4

K 9.87 39.5 88.8 158

2 m = mass/unit

L

Beam with fixed ends

f
K

L
E I
m

=
⋅ ⋅

⋅
2 2π

Mode 1 2 3 4

K 22.4 61.7 121.0 200.0

3 m = mass/unit length

L

Cantilever subject to
transverse vibrations

f
K

L
E I
m

=
⋅ ⋅

⋅
2 2π

Mode 1 2 3 4

K 3.52 22.0 61.7 121

4 m = mass/unit length

L

Cantilever one end fixed
and simply supported at the
free end

f
K

L
E I
m

=
⋅ ⋅

⋅
2 2π

Mode 1 2 3 4

K 15.4 50.0 104.0 178.0

5

L

M

Cantilever with mass at the
free end 
(assume the beam has a
negligible mass)  

f
E I

M L
= ⋅ ⋅

⋅ ⋅
⋅

1
2

3
3π

6

L/2 L/2

M

Central mass on simply
supported beam
(assume the beam has a
negligible mass)

f
E I

M L
= ⋅ ⋅

⋅ ⋅
⋅

1
2

48
3π

continued
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passes from one side to the other. Because of this restriction, a force is required to move the piston 
within the dashpot and the force can be made to oppose any external force generated by the vibration.

In Figure 6.14b, air is the fluid and as the piston moves within the dashpot, it will suck or force air 
through the orifice in the bottom of the dashpot. Again, the orifice is sized to provide a resistance to 
the air as it passes through the orifice and this will provide a force opposing the motion of the piston.

It can be shown that for both systems the force opposing the motion (the damping force) is pro-
portional to the velocity of the piston within the dashpot. The equation for this force is

	

F constant velocity

= c 
dx
dt

dashpot = ×

	

(6.47)

Fluid

Force

Air

Force(b)(a)

FIGURE 6.14  Dashpot designs. (a) Fluid dashpot and (b) pneumatic dashpot.

TABLE 6.2  (continued)
Natural Frequencies and Coefficients ‘K’ for Various Modes

Case Graphic Equation Harmonic Mode

7

a

M

Off-centre mass on a simply
supported beam
(assume the beam has a
negligible mass) 

b

f
E I L

M a b
= 1

2
3

2 2⋅
⋅ ⋅ ⋅
⋅ ⋅π

L = a + b

8

M1 M2 M3

m 

Beam with multiple masses

1 1 1 1 1
2

1
2

2
2

3
2f f f f f

= + + +
Using Dunkerly’s method of combined 
loading
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The constant of proportionality ‘c’ is called the damping coefficient and has units of Ns/m and is 
determined by the sizes of the orifices in the piston or the dashpot cylinder.

The damped system is characterised as in Figure 6.15.
For a free natural vibration with damping, the equations of motion for the above damper/spring/

mass system with damping will be

	
M

d x
dt

k x c
dx
dt

2

⋅ = − ⋅ − ⋅
2

	
(6.48)

Dividing Equation 6.48 through by M gives

	

d x
dt

c
M

dx
dt

k
M

x
2

2
0+ 





⋅ + 





⋅ =
	

(6.49)

Substituting ωn
2 for k/M, making

	

δ ω= ⋅ ⋅

=
⋅ ⋅

c
M

c

M k/M

n2

2 	
(6.50)

The following version of the equation will result:

	

d x
dt

dx
dt

x
2

n n2
22 0+ ⋅ ⋅ ⋅ + ⋅ =δ ω ω

	
(6.51)

Now

	

2 2
2

δωn
c

M k

k
M

c
M

= ⋅
⋅

=
	

(6.52)

This equation may be solved by assuming a solution in the form x = es⋅t (s = constant).

M

k c

x

FIGURE 6.15  Spring–mass–viscous damper system.
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Substituting this relationship into the equation will result in the following formula

	
s

c
M

s
k
M

e s s est
n n

st2 2 22 0+ 





⋅ + 













 = + + =( )δω ω

	
(6.53)

Hence,
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c
M

s
k
M

s sn n
2 2 22+ 





⋅ + 





= + +δω ω
	

(6.54)

There are two roots to this equation

	
s

c
2M

c
2M

k
M1.2

2

n
2

n n= − ± 





− = − ± −δω δ ω ω2 2

	
= − ± −( )ω δ δn

2 1
	

(6.55)

The solution of this equation in general forms

	 x Ae t Be ts s= +1 2 	 (6.56)

A and B are constants which can be evaluated from initial values of ‘x’ and dx/dt. The substitu-
tion of the roots into the general form will result in the following equation
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M
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M
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M
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
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
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
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


t

	

(6.57)

Alternatively,

	
x e  Ae Ben

n nt + t t
= +





− −( ) − −( )δω ω δ ω δ2 21 1

	
(6.58)

The term e−(c/2M)t represents an exponential decaying factor. There are three general results aris-
ing from the expression within the brackets that will have a significant effect on the results, that is,

	 1.	 If ( ) ( ) ( ),c/2M k/M 12 2= =� δ  the factor within the bracket is 0 and the solution will be 
considered to be critically damped.

	 2.	 If ( ) ( ) ( ),c/2M k/M2 < <� δ2 1  the factor inside the bracket is negative; therefore, the solu-
tion will be underdamped.

	 3.	 If ( ) ( )c/2M k/M ( 1),2 2> >� δ  the factor inside the bracket is positive; therefore, the solu-
tion will be overdamped.

	 4.	 If ( ) ( ),χ δ/2M 0 02 2= >�  the factor inside the bracket shows that the system is undamped.
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6.3.2 C oulomb Damping

When a machine slide is accelerated along a slideway, friction will offer a resistance to the slide’s 
movement. This resistance is referred to as Coulomb damping and is proportional to the friction in 
the system (see Figures 6.16 and 6.17).

Static friction occurs when the two objects are stationary or undergoing no relative motion. The 
frictional force ‘F’ exerted between the two surfaces having no relative movement cannot exceed a 
value that is proportional to the product of the normal force ‘N’ and the coefficient of static friction μs.

	 Fs = μs ⋅ N	 (6.59)

Kinetic friction occurs when the two contacting surfaces are undergoing relative motion and slid-
ing against each other. In this case, the friction force ‘F’ between the two surfaces is proportional to 
the product of the normal force ‘N’ and the coefficient of kinetic friction μk.

	 Fk = μk ⋅ N	 (6.60)

In both these cases, the frictional force will always oppose the direction of movement between the 
surfaces. The normal force is perpendicular to the direction of motion and is equal to the weight (Mg) 
of the sliding object, where the damping force Fd = μs⋅k ⋅ N and is independent of velocity.

The system is given an initial displacement ‘A’ and is then released as shown in Figure 6.13.

	

2π
ωn

The equations of motion for each direction

	

Mx kx F   0     

x A
F
k

cos t
F
k

Since F opposes m

d

n

��

∓ ∓

+ ± =

= 





± ω ‘ ’ ootion

k

x

M
µs · k

N

µk = coefficient of kinetic friction
µs = coefficient of static friction

FIGURE 6.16  Coulomb damping.

t0

A
m

pl
itu

de

One cycle

4FDecay per cycle = k

FIGURE 6.17  Coulomb diagram.
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6.3.3 I nertial Damping

A significant mass is attached to the vibrating system. This has the effect of absorbing the vibration 
energy; it does not eliminate the vibration but introduces a phase lag such that when the vibration 
peak passes, the inertia of the mass absorbs that energy and this then reduces the instantaneous 
energy. An example is the counterweights fitted to the crankshaft of an engine as they even out the 
vibrations created within the engine.

A further example is the ballast fitted to boats where they damp out the rolling action created by 
the sea waves.

Internal damping (also known as hysteretic and viscoelastic damping) is mainly concerned with 
the support of a mass using an isolator between the mass and supporting structure such as the ground.

There are two methods of isolation:

	 1.	Active isolation
	 2.	Passive isolation

Figure 6.18a and b is a schematic diagram of a mass subjected to a vertical periodic force.

6.3.4 I nternal Damping

In general, rubber mounts are used to isolate vibrations under items such as machine tools and so on.

D = Specific damping energy
= energy dissipated per cycle per unit volume of material
= area of stress–strain loop (Hysteresis loop)

U = Maximum energy stored per unit volume during loading
ψ = Specific damping capacity
α = Loss angle, the phase difference between stress σ and strain ε
tan ϕ = Loss factor

D = πσε sin ϕ
U = 1/2 σε cos ϕ
ψ = D/(2U) = π tan ϕ

For a mass supported by rubber isolators

	
δ α= 1

2
tan

M

F sin ωt

k Isolator

Support

(a) (b)

y sin ωtkIsolator

Support

M

FIGURE 6.18  Mass subject to a vertical periodic force. (a) Active isolation and (b) passive isolation.
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The value of α for natural rubber will vary between 4° and 11°.
For neoprene, α = 9° and for butyl α = 15°.
The equations of motion will be

	 x A sin ( t ) x tan x x 0e t
d n n

n= + + + =−δω ω ψ αω ω2

with the solution

	 x A sin( t )e t
d

n= +−δω ω ψ

6.4  SINGLE DEGREE OF FREEDOM: FORCED VIBRATIONS

In the previous section covering damped oscillations, it was shown that a free vibration will eventu-
ally die away over a period of time as the energy is dissipated by the damping. It was shown that the 
equation for the displacement of a damped oscillation is given by

	 x Ce tnt
n= −δω ωcos( ) 	 (6.61)

where
δ is the damping factor
ωn is the natural frequency

The following cases are described:

	 1.	When δ > 1, the system is overdamped.
	 2.	When δ = 1, the system is critically damped.
	 3.	When δ < 1, the damped oscillations will die away with time.
	 4.	When δ = 0, the system has no damping and a steady oscillation will occur.

Figure 6.19 illustrates the effect of the damping ratio.
If the damping factor ‘δ’ is less than zero, that is, negative, this would be the opposite to damp-

ing and would reverse the energy flow in that energy would be put back into the system instead of 
removing it. As the energy is put back into the system, it is possible for the oscillations to increase, 
the energy being supplied by an external force, and such oscillations are called forced oscillations. 

δ = 0

δ < 1

δ < 0

δ = 1
20

10

0

–10D
isp

la
ce

m
en

t

–20
0.0 0.2 0.4 0.6

Time
0.8 1.0 1.2

FIGURE 6.19  Comparison of various damping ratios.
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An excellent example is that of a child sitting on a swing. If the child begins to swing but does noth-
ing, the swing will gradually come to a halt. If someone gives the swing a small push at the start of 
each swing, energy is being added to the system and the swing (oscillations) begins to increase, that 
is, gets higher and higher. This phenomenon is called excitation.

Many engineering structures are prone to vibration when being excited at or near their natural 
frequency. If the excitation is close to the natural frequency, then the oscillations may become out 
of control. An example is the wind blowing around cooling towers, chimney stacks and suspended 
cables. The phenomenon is known as vortex shedding and is a major problem for the designers of 
these structures as the oscillations may increase and lead to a catastrophic failure.

At a lower level, if an automotive is travelling over a corrugated surface such as Belgian pave, the 
disturbance may be close to the natural frequency of the suspension causing the vehicle to possibly 
bounce out of control. Most vehicle-testing laboratories will usually have a section of pave as part 
of the suspension test.

6.4.1  Forced Vibrations

Two types of forced vibrations will be considered:

	 1.	When a mass has a disturbing force acting on it.
	 2.	When the spring support is disturbed harmonically.

6.4.1.1  Disturbing Force Acting on Mass
Figure 6.20 shows a system where a mass sitting on a spring and fitted with a damper has a fixed 
support. Located on the mass is a small rotating machine that is out of balance. This is equivalent 
to a small mass ‘m’ that is rotating at a radius ‘r’ and is producing the out-of-balance force. The 
magnitude of the force is Fo = mrω2. The main mass is restrained within guides and is restricted to 
be only able to move vertically (one degree of freedom). At the position shown with the small mass 
rotated through an angle of ‘θ’, the component of Fo acting vertically is F′ = Fo sin θ.

Any force applied to the main mass must overcome the inertia, damping force and spring force.
The applied force is

	 F = Fi + Fd + Fs	 (6.62)

Rest
position

Displacement
‘x’ m 

rY(t) = Yo sin ω t

Rotating mass
‘mo’ kg

θ
ω  rad/s

‘m’ kg

Mass

FIGURE 6.20  Mass subject to rotor excitation.
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F M

d x
dt

c
dx
dt

kx= + +
2

2
	

(6.63)

In this case, as the mass is restricted to move vertically, the only force applied to the mass is the 
vertical component of the centrifugal force.

	
F t M

d x
dt

c
dx
dt

kxo sin ( )ω = + +
2

2
	

(6.64)

6.4.1.2  Phasor Representation
It is assumed that the mass oscillates vertically with a sinusoidal oscillation ‘A’. Assume that the 
oscillation is going to start when it passes through the rest position. The displacement is given by 
x = Asin ωt where A is the amplitude.

The velocity is v = (dx/dt) = Aωcos ωt where Aω is the amplitude.
The acceleration will be a = (dv/dt) = −Aω2sin ωt where Aω2 is the amplitude.
The displacement ‘x’, velocity ‘v’ and acceleration ‘a’ when plotted against time ‘t’ will result in 

Figure 6.21. Each graph may be generated by a vector rotating at ω rad/s and with a length equiva-
lent to the amplitude. Such vectors are referred to as phasors. At a given point in time, the tip of each 
vector is projected across to the appropriate point as indicated.

It is clearly seen that in order to produce the results, the velocity vector is 90° in front of the dis-
placement vector and the acceleration vector is 90° in front of the velocity vector.

Considering Figure 6.20, it is obvious that the spring force is directly proportional to the displace-
ment ‘x’, so therefore it must be in phase with ‘x’. The damping force is then directly proportional to 
the velocity ‘v’ and is in phase with ‘v’; and finally, the inertial force is directly proportional to the 
acceleration ‘a’; hence, it follows that the inertia is in phase with ‘a’.

All three forces can then be represented by phasors rotating at an angular velocity ω rad/s.
The spring force is in phase with the movement; therefore, the displacement vector can be drawn 

horizontally and the velocity vector and acceleration vector can be drawn 90° and 180° ahead, 
respectively as shown in Figure 6.22.

The sum of these three forces can be represented by a force Fo and by adding these three forces 
a typical vector diagram will result as shown in Figure 6.23.

From the diagram, it is seen that the applied force Fo is at an angle ϕ to the horizontal axis; there-
fore, it must be displaced by a phase angle ‘ϕ’ relative to ‘x’.

	 F kA MA cAo
2 2 2 2= − +( ) ( )ω ω 	 (6.65)

x

v a

Deg

A
ω A

A
ω

2

a

v

x
+1.0

–1.0
0 90 180 270 360 450 540

A
m
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de

FIGURE 6.21  Phasor representation.
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F A k M A co

2 2 2 2 2 2= − + ( )( )ω ω
	

(6.66)

	
F A k M co

2 2 2 2 2= − + ( ) ( )ω ω
	

(6.67)

Dividing through by M2

	

F
M

A k
c
M

o
2

2
2 2 2

2

= − + 

















( )ω ω

	

(6.68)

From Equations 6.50 and 6.52, it was shown that ωn k/m2 =  and c/M = 2δ ωn.

	

A
F
M

o

n n

2

2

2 2 2 2

1

2
= 



 −( ) + ( )











ω ω δωω
	

(6.69)

From the triangle, the phase angle ‘ϕ’ is obtained.

	
tan n

n

φ δωω
ω ω

=
−

2
2 2

	
(6.70)

Plotting displacement (x) and the applied force (Fo) against time gives a graph similar to Figure 
6.24.

6.5  NATURAL FREQUENCY OF BEAMS AND SHAFTS

This section discusses the natural frequency of transverse vibrations.

Acceleration ‘a’

Ve
lo

ci
ty

 ‘v
’ 

Aω

Aω2 A 

Inertial force
= MAω2 Spring force = kA 

D
am

pi
ng

 fo
rc

e
= 

cA
ω

 

Displacement ‘x’

FIGURE 6.22  Representation of vectors.

φ

MAω2

cAω

kA 

Fo

φ

Fo cAω

kA – MAω2

(a) (b)

FIGURE 6.23  (a) and (b): Addition of vectors.
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6.5.1 D egrees of Freedom

In Section 6.3, vibration in one degree of freedom was discussed. In this section, this discussion will 
be extended to three degrees of freedom.

There are three translation axes as shown in Figure 6.25; they are in the ‘x’, ‘y’ and ‘z’ directions 
in which an object can move unrestrained.

There are three other degrees of freedom which cover pitch, roll and yaw. These are superim-
posed on the translation axes as shown in Figure 6.26.

In the study of free vibrations, only one degree of freedom will be considered.

Phase

AFo

x = Acos(ω · t)

F = Fo cos (ωt + φ)

Time

1.0

0.5

0

–0.5

–1.0
0 1.0 2.0 3.0 4.0 5.0 6.0

FIGURE 6.24  Frequency versus time.

‘y’

‘z’ ‘x’

FIGURE 6.25  Three degrees of freedom axes.

‘y’

‘z’ ‘x’

Yaw

Pitch

Roll

FIGURE 6.26  Six degrees of freedom.
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6.5.2 B eams Subject to Transverse Vibrations

A beam or cantilever when subject to transverse vibrations will exhibit various modal behaviour char-
acteristics. These behaviours will be dependent upon the natural frequency of the beam or cantilever.

6.5.3 S imply Supported Beam Subject to Transverse Vibration

Consider a beam as shown in Figure 6.27a which is simply supported at each end and subjected to a 
transverse vibration. This is referred to as a mode-1 vibration.

If the frequency of the vibration is increased, the second harmonic is reached (see Figure 6.27b). 
And if the frequency is increased even further, a third harmonic will be reached resulting in Figure 
6.27c.

6.5.4 �T orsional Frequency of a Cantilevered Shaft Carrying a Mass at the Free End 
(Figure 6.28)

Assume the beam has a negligible mass.

	
f

k
J

 Hzn
m

= 1
2π 	

(6.71)

Mode = 2

Mode = 3

Mode = 1

(a)

(b)

(c)

m = mass/unit
length 

FIGURE 6.27  Transverse harmonics. (a) First harmonic, (b) second harmonic and (c) third harmonic.

M

L

k 

D

Jm

FIGURE 6.28  Torsional frequency of a cantilever shaft.
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where

k torsional stiffness of shaft
G J

L
= = ⋅

J polar moment of inertia D= = π
32

4

Jm = polar moment of inertia of mass = Mk2

6.5.5 T orsional Frequency of a Shaft Carrying Two Masses (Figure 6.29)

Assume the beam has a negligible mass.

	
f

k J J
J J

Hzn
t= +

⋅
1

2
1 2

1 2π
( )
( ) 	

(6.72)

Torsional stiffness of shaft
G J

L
(Nm/rad).= ⋅

G = shear modulus (N/m2)
θ = twist in the shaft (rad)
Polar moment of inertia of masses = M1k2 + M2k2

Position of node L L/(1 (J /J ))1 M M1 2
= = +

Ratio of the twist in the shaft

	

θ
θ

1

2

2

1

= J
J 	

(6.73)

Figure 6.30 shows the position of the node.

M2M1

J2

J1

kt

L

L1

FIGURE 6.29  Torsional frequency of shaft carrying two masses.

Ln

θ1

θ2

FIGURE 6.30  Natural frequency of a two mass system and node position.
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6.5.6 T orsionally Equivalent Shafts

In the previous two examples, a uniform diameter shaft was considered. In actual practice, shafts 
with variable diameters and lengths are more likely to be used.

In such cases, a shaft may theoretically be replaced by an equivalent shaft that has a uniform 
diameter.

Figure 6.31a depicts a shaft having three steps with diameters d1, d2 and d3 with lengths L1, L2 and 
L3, respectively. Consider that this shaft is replaced by an equivalent shaft having a uniform diam-
eter ‘de’ and length ‘Le’ as shown in Figure 6.31b. The equivalent shaft has to have the same angle 
of twist as the original shaft when opposing torques ‘T’ are applied from both ends of the shaft.

Let

d1, d2 and d3 = diameters for the corresponding lengths ‘L’.
θ1, θ2 and θ3 = angle of twist for lengths L1, L2 and L3, respectively.
θT = total angle of twist.
J1, J2 and J3 = polar moments of inertia for the shafts having diameters d1, d2 and d3, respectively.

As the total angle of twist of the equivalent shaft is equal to the sum of the individual angles of 
twists of the different lengths, therefore

	
θ θ θ1

1

1

2

2

3

3

= ⋅
⋅

⋅
⋅

⋅
⋅

T L
G J

  = 
T L
G J

=
T L
G J2 3, ,

	
(6.74)

Hence

	

T L  
G J

T L
G J

T L
G J

T L
G J

e

e

⋅
⋅ = ⋅

⋅ + ⋅
⋅ + ⋅

⋅
1

1

2

2

3

3 	
(6.75)

Extracting T/G which is common throughout:

	

L
J

  
L
J

  
L
J

  
L
J

e

e

= + +1
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2

2

3

3 	
(6.76)

Now

	
J

d
, J

d
J

d
and J

d
e

e
1

1
2

2
3

3= ⋅ = ⋅ = ⋅ = ⋅π π π π4 4 4 4

32 32 32 32
,

	
(6.77)

Le

d1 d2 d3

L1 L2

(a)

L3

de(b)

FIGURE 6.31  (a) and (b): Three-stepped equivalent shaft.
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Replacing ‘J’ and multiplying throughout with d1
4 where the diameter of the equivalent shaft 

diameter ‘d’ is taken as d1, the length of the equivalent shaft is

	
L L L

d
d

L
d
de = + +1 2

1
4

2
4 3

1
4

3
4

	
(6.78)

Whenever confronted with a stepped shaft in torsional vibration problems, always convert it into 
an equivalent shaft of uniform diameter and then determine the torsional frequency as discussed for 
the two rotor example.

EXAMPLE 6.7

Consider a steel shaft as illustrated in Figure 6.32. The steel shaft is 1500 mm long. It is stepped at 
95 mm diameter for a length of 600 mm, followed by a diameter of 60 mm for a length of 500 mm 
and finally a diameter of 50 mm for the remaining length of 400 mm. The shaft is fitted with two 
flywheels at each end. The first flywheel has a mass of 900 kg and a radius of gyration of 850 mm. 
This flywheel is located on the 95 mm diameter portion of the shaft. The second flywheel has a 
mass of 700 kg with a radius of gyration of 550 mm and is located at the 50 mm diameter portion 
of the shaft.

Calculate the position of the node together with the natural frequency of the free torsional 
vibration of the shaft. The modulus of rigidity (G) of the shaft material may be taken as 7.2 GPa.

Solution

Given that

L = 1500 mm

L1 = 600 mm d1 = 95 mm

L2 = 500 mm d2 = 60 mm

L3 = 400 mm d3 = 50 mm

Ma = 900 kg ka = 850 mm

Mb = 700 kg kb = 550 mm

G = 7.2 GPa

Determine the length of the equivalent shaft assuming its diameter as d1 = 95 mm.

∅ 95 ∅ 60 ∅ 50

M = 700 kg
r = 550 mm

M = 900 kg
r = 850 mm

1500 mm

600 mm 500 mm 400 mm

A
B

FIGURE 6.32  Stepped shaft carrying two flywheels.
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From Equation 6.78, the length of the equivalent shaft is calculated as

	

L L L
d
d

L
d
d

L 600 mm 500 mm
95 mm
60 mm

400 mm
95 m

e 1 2
1
4

2
4 3

1
4

3
4

e

4

4

= + +

= + × + × mm
50 mm

L 8955 mm (8.955 m)

4

4

e =

Location of the Node

Assume the position of the node of the equivalent shaft lies at ‘N’ as shown in Figure 6.33.
Let

	 LA = distance of the node from the flywheel ‘A’
	  LB = distance of the node from the flywheel ‘B’

Mass moment of inertia of flywheel ‘A’:

	

J M k

J 900 kg (850 mm)

J 650.25 kg m

A a a
2

A
2

A
2

= ×

= ×

= ⋅

Mass moment of inertia of flywheel ‘B’:

	

J M k

J 700 kg (550 mm)

J 211.75 kg m

B b b
2

B
2

B
2

= ×

= ×

= ⋅

Hence,

	

L J L J

L  = 
L  J

J

L
L 211.75 kg m

650 kg m

L 0.326 L

A A B B

A
B B

A

A
B

2

2

A

× = ×
×

= × ⋅
⋅

= BB

A
BNode

Equivalent length = 8955 mm

2201.6 mm 6753.4 mm

FIGURE 6.33  Mode position for Example 6.7.
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Now

	 LA + LB = L = 8955 mm

	 LA = 0.326 LB + LB

	 LA = 1.326 LB

	
L

8955 mm
1.326

B =

	 ∴ =L 6753.4 mmB

	 LA = 8955 mm − 6753.4 mm

	 LA = 2201.6 mm

Hence, the node lies at 2201.6 mm from flywheel ‘A’ and 6753.4 mm from flywheel ‘B’.

Natural Frequency of Free Torsional Vibrations

The polar moment of inertia of the equivalent shaft:

	
J

d
32

e = ⋅π 1
4

	
J

(0.095 m)
32

e

4

= ×π

	 J 8.0 10 me
6= × −

	
f  = 

1
2

G J
L J

n
e

A Bπ
⋅
⋅

	
f  = 

1
2

72 10 N/m 8.0 10  m
2.2 m 650 kg m

n

9 2 -6 4

2π
× × ×

× ⋅

	 fn = 3.194 Hz

6.5.7 T orsional Frequency of a Geared Shaft Carrying Two Masses (Figure 6.34)

Note: The shafts are assumed to be light.
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k k

G k k
J G J

J J
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1 2

R 2 1
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1 2
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2 2
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π aas of the gears( )
	

(6.79)

where

	
G Gear ratio

Speed of shaft
Speed of shaftR = = 2

1 	
(6.80)
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k

G I
L

k =
G I

L
R1

1
2

R2 2
1

1

2

=
	

(6.81)

Note: Torque and inertia are referred to the driven shaft.

Torque on shaft 2 = torque on shaft 1 × (gear ratio) (GR).

Inertia of shaft 2 = inertia of shaft 1 × (gear ratio)2(GR)2.

EXAMPLE 6.8

A steel shaft 100.0 mm in diameter and 1000 mm long carries a flywheel at its end measuring 
1000 mm in diameter and weighing 1000 kg.

Calculate the torsional frequency of this single rotor system (see Figure 6.35).

Solution

Given that the diameter of the shaft = 100 mm, length of the shaft = 1000 mm, modulus of rigidity 
(G) = 72 × 109 Pa and density (ρ) = 7.8 kg/m3.

Polar moment of inertia of the shaft:

	
J

(dia’ shaft)
32

shaft

4

= ×π

	
J

100 mm
32

9.817 10 mshaft

4
6 4= × ×= −π

M1

M2

Driver Driver

L1 L2

J1

J2

I1

I2

Gear set

FIGURE 6.34  Torsional frequency of a geared shaft with two masses.

1000 mm

M = 1000 kg

∅ 1000 mm
∅ 100 mm

FIGURE 6.35  Torsional frequency of a plane shaft with one flywheel.
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Stiffness of the shaft:

	
S

J G
L

= ⋅

	
S

9.817 10  m 72 10 Pa
1000 mm

 7.069 10 N m
6 4 9

5= × × × ×= ⋅
−

Polar Moment of Inertia of the Flywheel

Mass moment of inertia:

Mass = 1000 kg
Radius of gyration = 500 mm

	 Jm = M ⋅ k2

	 Jm = 1000 kg × 5002 mm = 250 kg ⋅ m2

	
f  = 

1
2

S
J

n
mπ

⋅

	
f  

1
2

7.069 10  Nm
250 kg m

n

5

2= ⋅ ×
⋅π

	 fn = 8.463 Hz

EXAMPLE 6.9

A steel shaft 100.0 mm in diameter and 1000 mm long carries two identical flywheels at each end 
measuring 1000 mm in diameter and weighing 1000 kg each.

Calculate the torsional frequency of this two rotor system and determine the node position. 
(Refer to Figure 6.36).

Solution

Given that the diameter of the shaft = 100 mm, length of the shaft = 1000 mm, modulus of 
rigidity (G) = 72 × 109 Pa and density (ρ) = 7.8 kg/m3.

Polar Moment of Inertia of Shaft

	
J

(dia’ shaft)
32

shaft

4

= ×π

M = 1000 kg

1000 mm

∅ 100 mm
∅ 1000 mm

FIGURE 6.36  Torsional frequency of a plane shaft with two flywheels.
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J

100 mm
32

9.817 10 mshaft

4
6 4= × = × −π

Stiffness of the shaft

	
S

J G
L

= ⋅

	
S

9.817 10 m 72 10 Pa
1000 mm

7.069 10 N m
6 4 9

5= × × × = ×
−

⋅

Polar Moment of Inertia of Flywheels

Mass moment of inertia:

Mass = 1000 kg
Radius of gyration = 500 mm

	 J = M ⋅ k2

	 J = 1000 kg × 5002 mm = 250 kg ⋅ m2

Torsional Frequency

	

f
1

2
S (2J)

J

f
1

2p
7.069 10 (2 250 kg m )

(250 kg m )
11.9

n 2

n

5 2

2 2

= ⋅

= × × × ⋅
⋅

=

π

668 Hz

Position of Node

	

L
1000 mm

(1 (250 kg m /250 kg m ))

L 500 mm (from either end)

n 2 2

n

=
+ ⋅ ⋅

=

EXAMPLE 6.10

In this exercise, a shaft connects a motor to a gear set and a further shaft then connects to a pump.
The pump speed is one-third of that of the motor. The diameter of the shaft from the motor to the 

pinion of the gear set is 60 mm and the length of the shaft is 300 mm. The moment of inertia of the 
motor is 400 kg ⋅ m2. The pump shaft is 100 mm in diameter and is 600 mm long. The moment of 
inertia of the pump is 1500 kg ⋅ m2. Neglecting the inertia of the shafts and gears, determine the fre-
quency of torsional vibration of the system. The modulus of rigidity of the shaft material is 72 GPa.

Solution

Given that

Gr = Na/Nb = 3:1 (Gr = gear ratio), d1 = 60 mm, L1 = 300 mm, d2 = 100 mm, 
L2 = 600 mm, Ja = 400 kg ⋅ m2, Jb = 1500 kg ⋅ m2 and G = 72 × 109 N/m2.

The first action is to establish the moment of inertia of the equivalent rotor ‘B’ and the additional 
length of the equivalent shaft assuming its diameter is d1 = 60 mm.
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The Moment of Inertia of the Equivalent Rotor ‘B’

	

J  = 
J

Gr

J
1500 kg m

3
J 166.667 kg m

b
b
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2

2

b
2
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The Additional Length of the Equivalent Shaft

	

L  = G L
d
d
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60 mm
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L 700 m

3 r
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2
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


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= × ×




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= mm

The Total Length of the Equivalent Shaft

	 Le = L1 + L3

	 Le = 1000 mm

Let the node of the equivalent system lie at position ‘N’ as shown in Figure 6.37a and b.

	

L J L J

L
L J

J

L
700 mm 166.67 kg m

400 kg m

L 291.67

a a b b

a
b b

a

a

2

2
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× = ×

= ⋅

= ×

=

⋅
⋅

mmm

Ln

θ1
θ2

θ3

Node

Ln2

θ1 θ3

θ2

Ln1

Node Node

(b)

(a)

FIGURE 6.37  (a) and (b): First and second modes for Example 6.10.
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The Polar Moment of Inertia of the Equivalent Shaft
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Torsional Frequency of the Equivalent Shaft
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π
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6 4

2

n

6.5.8 T orsional Frequency of a Shaft Carrying Three Masses (Figure 6.38)

Note: The shaft is assumed to be light.

First mode (low frequency):
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(6.82)

where
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Ratio of twists in the shaft:
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M1
M2

L1 L2

J1 J2

I1
I2

M3

J3

FIGURE 6.38  Torsional frequency of a shaft carrying three masses.



129Mechanical Vibrations

Position of node:
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Ratio of twists in the shaft:
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Position of nodes:

	
L

L
/

L
L

/n n1
1

2 1
2

2

2 31 1
= + = +( )

;
( )θ θ θ θ 	

(6.89)

6.6  FORCED VIBRATIONS

6.6.1  Overview

In Section 6.3, which covers damped vibrations, it was demonstrated that a free vibration will 
diminish over time as the energy contained in the vibrating system is dissipated by the damping. 
The displacement in a damped oscillation is given as

	 x Ce tn t= −δω ωcos( ) 	 (6.90)

where
δ = damping ratio and ωn = natural angular frequency

	 1.	When δ > 1, the system is overdamped.
	 2.	When δ = 1, the system is critically damped.
	 3.	When δ < 1, the damped oscillation will gradually diminish in time.
	 4.	When δ = 0, the system is undamped and steady oscillation will occur.

Figure 6.19 compares the effects of various damping factors on oscillations.
When the damping ratio (δ) is less than zero, that is, negative, instead of energy being taken out 

of the system, there is an external force inputting energy into the system. As the energy is added, the 
amplitude increases. When this energy is added, such oscillations are said to be ‘forced’. A classic 
example of a forced oscillation is that of a child on a swing. When the child is given an initial push 
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to start the swing, the oscillations will gradually decrease due to air resistance on the child’s body 
together with friction at the swing supports and will eventually come to a halt. If the swing is given 
a slight push at the start of each swing, energy is being added to the system and the swing will go 
higher and higher. This phenomenon is known as excitation.

Two further examples of forced vibrations are when an automobile is being driven over Belgian 
pave. In some cases, the vehicle’s suspension is not able to cope with the rough ride and there 
is excessive vibration and the suspension oscillations will increase uncontrollably. The second 
example happens when a vehicle’s wheels are out of balance and that creates excessive vibration 
of the wheel.

There are many other examples in engineering structures that vibrate at or near the natural fre-
quency of the structure such as a pump and motor set on a suspended floor, suspension bridges and 
chimney columns subject to a wind blowing around them causing vortex shedding.

There are three types of forcing mechanisms that will be considered and these will be applied 
to a spring–mass system as shown in Figure 6.39a through c. The masses are constrained in the 
horizontal plane and will be able to move only in the vertical plane; hence, they are subjected to one 
degree-of-freedom.

6.6.2 E xternal Forcing

Figure 6.39a models the behaviour of a system that has a time-varying force acting on it such as a 
structure being subject to wind loading.

Base excitation: This system model represents the behaviour of a vibration isolation system 
where the base of the spring is given a prescribed motion, causing the mass to vibrate. The arrange-
ment is shown in Figure 6.39b. Examples include a vehicle suspension system or the earthquake 
response of a structure.

Rotor excitation: Consider a motor attached to a large mass (M) and fitted with an out-of-
balance mass (mo) that rotates at a constant speed at radius ‘r’ as depicted in Figure 6.39c. This 
causes the main mass ‘M’ to oscillate. In this case, the disturbing force will be harmonic, that is, 
sinusoidal.

(a) (b) (c)

Spring stiffness ‘k’ N/m

Dashpot damping
coefficient ‘c’ Ns/m

Mass
‘m’ kg

Mass
‘m’ kg

Mass
‘m’ kg

Rotating mass

‘mo’ kg

θr
ω rad/s

F(t) = Fo sin ωt 

Y(t) = Yo sin ωt 

Y(t) = Yo sin ωt

Rest

Displacement
Rest 
Position

Displacement

‘x’ m

θ
Fo sinFo

FIGURE 6.39  External forcing examples. (a) External forcing, (b) base excitation and (c) rotor excitation.
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Any force that is applied to the mass to make it move has to overcome the inertia (Fi) of the mass, 
spring force (Fs) from the supporting structure and damping (Fd). The applied force (Fa) will be

	 Fa = Fi + Fs + Fd	 (6.91)

	
F M

d x
dt

c
dx
dt

kx= + +
2

2
	

(6.92)

In the cases shown, the mass can only move vertically; therefore, the only force applied to it will 
be the vertical component of the centrifugal force:

	
F t M

d x
dt

c
dx
dt

kxo

2

sin ω( ) = + +
2

	
(6.93)

When the mass is subjected to a harmonic disturbing force, it will oscillate vertically with a 
sinusoidal motion having amplitude ‘A’. Consider that the timing of the oscillation begins when the 
oscillation passes through the rest position. The displacement is given by

	 x = A sin ωt	 (6.94)

where A is the amplitude.
The velocity will be

	
v

dx
dt

A t= = ω ωcos
	

(6.95)

where Aω is the amplitude.
The acceleration will be

	
a

dv
dt

A t= = − ω ω2 sin
	

(6.96)

where Aω2 is the amplitude.
In Figure 6.21, the displacement ‘x’, velocity ‘v’ and acceleration ‘a’ are plotted against time. 

Each graph is generated by a vector rotating at ω rad/s with a length equal to the amplitude.
Such vectors are called phasors. At a given point in time, the tip of each vector is projected across 

to the appropriate point in the graph as shown in the figure.
For this result, the velocity vector has to be 90° in front of the displacement and the acceleration 

needs to be 90° in advance of the velocity.
The spring force will be directly proportional to the physical displacement ‘x’; therefore, it has 

to be in phase with the displacement ‘x’. The damping force is directly proportional to the velocity 
‘v’ and therefore has to be in phase with the velocity ‘v’. The inertial force is directly proportional 
to the acceleration ‘a’ and therefore will be in phase with the acceleration ‘a’.

The three forces can be represented by phasors rotating at an angular velocity ω rad/s, choosing 
a time when the displacement is horizontal as shown in Figure 6.22a.

The spring force being in phase with the displacement is drawn horizontally. The other vectors 
will be 90° and 180° ahead, respectively, as depicted in Figure 6.22b.
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The sum of these three vectors is Fo; adding these together, a typical vector diagram as shown in 
Figure 6.23 will be obtained.

It will be seen from the figure that the applied force Fo is at an angle ‘θ’ to the horizontal; hence, 
it must be displaced by the phase angle ‘θ’ relative to ‘x’.

From Pythagoras’s theorem

	 F A k M A c Extracting Ao
2 2 2 2 2 2 2= − ⋅ + ⋅( ) ( ) ( )ω ω 	 (6.97)

	
F A k M c Simplifyingo

2 2 2 2 2= − ⋅ + ⋅ ( ) ( ) ( )ω ω
	

(6.98)
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2

2
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(6.99)

Now
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M
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n= = δω
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(6.100)

From Figure 6.24, it is possible to deduce the phase angle

	
Tan n

n

φ δ ω ω
ω ω

= ⋅ ⋅
−

2
2 2

	
(6.101)

6.6.3  Frequency Response Diagrams

Consider the spring–mass–damper model of Figure 6.39a with a harmonic force externally applied.
This type of force could, for example, be generated by a rotating imbalance in, say, a motor or a 

wheel on a vehicle. If the speed of rotation (ω) is gradually increased from zero and taking a value 
of ωn = 10, plotting ‘θ’ against ‘ω’ for various values of ‘δ’, a graph like Figure 6.40 will result.

The graph shows that the phase angle ‘θ’ starts at zero and reaches 90° when ω = ωn. As the 
speed of rotation is increased, the phase angle approaches 180°.

Plotting the amplitude ‘A’ against frequency ‘ω’ for various values of ‘δ’ will result in the graph 
shown in Figure 6.41.

Equation 6.99 is analysed at three frequencies.
When

	 1.	ω = 0
	 2.	ω = ωn

	 3.	ω > ωn

	

A
F
M n

o

n

2

2

2 2 2 2

1
2

= 



 − + ⋅





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


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


( ) ( )ω ω δω ω

	

(6.102)
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	 1.	ω = 0: The equation reduces to

	
A

F
M

o

n

= 













1
2ω

	
(6.103)

		    This will have a finite value (1 in the Figure 6.41) and will be the same starting point for 
all values of ‘δ’.

	 2.	ω = ωn: At this point, the amplitude will become

	
A

F
M

1
2

o
2

= 











( )δω

		    The value of the amplitude will depend upon the value of ‘δ’. The smaller the value of 
damping (δ), the larger the peak value of ‘A’. If the damping factor ‘δ’ is reduced to zero, 
then theoretically ‘A’ → ∞.

	 3.	ω > ωn: As the frequency increases past ‘ωn’, the amplitude will begin to diminish down to 
zero for all values of ‘δ’.

		    It can be concluded that when an out-of-balance machine rotates at a speed very much 
greater than ‘ωn’, there will be very little disturbance to the system, but when the speed 
of rotation is reduced and approaches ωn, the amplitude will increase and could possibly 
become very large. In the past, it has led to catastrophic failures, so care has to be exer-
cised. As an aside, very large armatures as used in electrical power stations are designed to 
have a low resonant frequency and when starting up have to pass through all the harmonic 
frequencies. Before it settles down at its operating speed, the armature will remain at this 
speed for many months to minimise any possible damage when slowing down. It should be 
noted that the frequency at which the amplitude peaks is known as the resonant frequency, 
which is not quite the same as the natural frequency of the system.

δ = 0.05

δ = 0.2
δ = 0.1

δ = 1.0

Angular frequency

180

150
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30

0
0 1.0 2.0 3.0
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e a
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 ‘θ

’

FIGURE 6.40  Phase angle with respect to damping.
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EXAMPLE 6.11

A mass–spring–damper system is subjected to a harmonic disturbing force given by the equation 
F = 400 sin (30 t) N as shown in Figure 6.42. Calculate the amplitude of the mass and the phase 
angle.

Solution

Given that k = 10,000 N/m, M = 5 kg and c = 150 N ⋅ s/m.

	
ωn

k
M

=

	
ωn

10,000 N/m
5 kg

=

	 ωn = 44.271 Hz.

	 c 4Mkc =

δ = 0.1

δ  = 0.2

δ = 0.5

δ = 1.0

A
m

pl
itu

de
 ‘A

’

Angular frequency ‘ω’

11.0

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0
0 0.5 1.0 1.5 2.0 2.5 3.0

FIGURE 6.41  Amplitude against angular frequency.
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c 4 5 kg 10,000 N/mc = × ×

	  cc = 447.214 kg/s

	
δ = c

cc

	
δ = 150 kg/s

447.214 kg/s

	 δ = 0.335

From the above equation:

	 (F = 400 sin(30t) N)

	 Fo = 400 N

	 ω = 30 rad/s

	
A

F
M

1
( ) (2 )

2 o
2

n
2 2

n
2= 



 − + ⋅







ω ω δω ω2

	
A

400 N
5 kg

1
((44.72 rad/s) (30 rad/s) ) (2 0.335 30 r

2

2

2 2 2=




 − + × × aad/s 44.71rad/s)2×













	 A2 = 0.003168 m2

	 A = 0.056 m (56.0 mm)

	
tan

2 n

n
2θ δω ω

ω ω
= ⋅

−2

	
tan

2 0.335 30 rad/s 44.721rad/s
44.721rad/s 30 rad/s2 2θ = × × ×

−

	 tan θ = 0.818

	 θ = 39.283°

k = 10,000

M = 5 kg

c = 150 Ns/m

FIGURE 6.42  Example 6.11.
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6.6.4 H armonic Movement of the Support

Figure 6.39b shows a mass–spring–damper system subject to a base excitation. The mass is 
restrained to move vertically only and the foundation is subject to a motion described by the equa-
tion y = a sin (ωt).

It is assumed that the mass will move harmoniously having an amplitude ‘A’, but it cannot be 
assumed that the motion of the mass will be in phase with that of the support. Hence, the equation 
of motion will be amended to x = A sin(ωt + θ) where θ is the phase angle.

During the cycle, the spring will be stretched or shortened by an amount (x – y) at any time. The 
spring force will be

	 F = k(x − y)	 (6.104)

The three forces acting on the mass are

	 Spring force k x y= −( ) 	 (6.105)

	 Damping force c dx/dt= 	 (6.106)

	 Inertial force Md y/dt= 2 2
	 (6.107)

In this instance, there is no external force being directly applied; so balancing the forces gives

	
θ θt

d

s

F
F

= − 





−tan 1

	
(6.108)

	
0

2

2
= + + −M

d x
dt

c
dx
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k x y( )
	

(6.109)
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2

2
= + + −M

d x
dt

c
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kx ky
	

(6.110)

	
ky M

d x
dt

c
dx
dt

kx
2

= + +
2

	
(6.111)

	
k a t M

d x
dt

c
dx
dt

kx( sin )ω = + +
2

2
	

(6.112)

Comparing this result with Equation 6.99

	
F t M

d x
dt

c
dx
dt

kxo sin( )ω = + +
2

2
	

(6.113)

It will be seen that the equations are similar except that the term ‘ka’ replaces the term Fo. It fol-
lows that solutions will be the same with this substitution.
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(6.114)

	
tan n
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θ δωω
ω ω

=
−

2
2 2

	
(6.115)

6.6.5 M agnification Factor

The ratio A/a is also known as the magnification ratio and applies when the support is excited. 
Equation 6.101 can be rearranged into the following form.
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(6.116)

As k/M = ωn
2,
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Equation 6.118 also applies to the case when a harmonic disturbing force is applied as ka = Fo; 

therefore, it follows that the M.F. will equal the maximum force in the spring Fo.
Figure 6.43 shows the response graph and will be similar to both cases. At low values of ‘ω’, the 

support and the mass will move together in synchrony. As the speed is increased and ‘ω’ approaches 
‘ωn’, the amplitude ‘A/a’ increases and the phase angle approaches 90°. As the speed passes through 
resonance and there is any further increase in speed, the amplitude ‘A/a’ will reduce and eventually 
become almost static. The phase angle will tend to 180° at higher speeds. The magnification ratio 
will be largest at the resonance frequency. As stated before, do not confuse the resonance frequency 
with the natural frequency.

The maximum magnification factor occurs when

	
1 2

2

2

2 2

−



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+ 



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ω
ω

δ ω
ωn n 	

(6.119)

is at a maximum. Using the max and min theory, this expression can be simplified to

	 ( ) ( )1 22 2 2− +r rδ 	 (6.120)
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Differentiating Equation 6.120 w.r.t. r

	

d r r

dr
r r  r2

( ) ( )
( )( )

1 2
2 1 2 8

2 2 2
2

− +{ }
= − − +

δ
δ

	
(6.121)

Equating to zero

	 2(1 − r2)(−2r) + 8 δ2 r = 0

	 r = √ −( )1 2 2δ 	 (6.122)

Hence, mean peak will occur when

	 ω ω δ= √ −n ( )1 2 2
	 (6.123)

EXAMPLE 6.12

Figure 6.44 shows a mass–spring–damper system where the support is subject to a motion of y = 6 
sin(40 t) mm.

Determine the maximum amplitude of the mass and corresponding phase angle.

Solution

Given that k = 10,000 N/m, M = 5 kg and c = 150 N ⋅ s/m.

	
ωn

k
M

=

δ = 0.1

δ = 0.2

δ = 0.5

δ = 1.0

Angular frequency

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0
0 0.5 1.0 1.5 2.0 2.5 3.0

A
a

FIGURE 6.43  Response graph.
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ωn

10,000 N/m
5 kg

=

	 ωn = 44.721 Hz

	 c 4Mkc =

	
c 4 5 kg 10,000 N/mac = × ×

	 cc = 447.214 kg/s

	
δ = c

cc

	
δ = 150

447 214
kg/s

kg/s.

	 δ = 0.335

From the equation of motion where a = 6 mm and 40 rad/s.

	

A
a

k
M

1
( ) (2 )n

2 2
n

2= 



 − + ⋅ω ω δω ω2

	

A
a

10,000
5

1
(44.721 40 ) (2 335 40 44.721 )2 2 2 2= 



 − + × × ×

	

A
a

1.581=

	 A = 1.581 × a

Therefore,

	 A = 9.487 mm

k = 10,000

M = 5 kg

c = 150 Ns/m

FIGURE 6.44  Example 6.12, mass–spring–damper system.



140 Design Engineer’s Reference Guide

The phase angle

	
tan

2 n

n
2θ δ ω ω

ω ω
= × × ×

−2

	
tan

2 0.335 40 44.721
44.721 402 2θ = × × ×

−

	 tan θ = 2.997

	 θ = 71.545°

6.6.6 T ransmissibility

When a mass is vibrating on an elastic support, a force is transmitted through the spring and damper 
to the supporting frame or ground. This force will be the sum of the spring and damping force. 
Figure 6.45 depicts the corresponding vector diagram.

From the vector diagram, it is deduced that the transmitted force is

	
F F Ft s d= +( )2 2

	
(6.124)

Now

	 Fs = k ⋅ A

	 Fd = c ⋅ A ⋅ ω

Hence,

	 F k A c AT = ⋅ + ⋅ ⋅[( ) ( )]2 ω 	
(6.125)

The transmissibility ratio is defined by FT/Fo.
The phase angle between the transmitted force and the applied force i

	
θ θT

d

s

a
F
F

= − 



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tan
	

(6.126)

If the substitution Fo = ka is made to the above work, then it will apply to both harmonic disturb-
ing forces and harmonic motion of the support.

Fd
FT

Fs

Fo

θT

ω

FIGURE 6.45  Vector diagram.
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EXAMPLE 6.13

Calculate the transmitted force and the phase angle for Example 6.12.

Solution

Given that k = 10,000 N/m, M = 5 kg, c = 150 N ⋅ s/m, ω = 30 rad/s, ωn = 44.721 rad/s and 
A = 9.487 mm, from the equations of motion:

Fs = k ⋅ A
Fs = 10,000 N × 9.487 mm
Fs = 94.87 N

Fd = c × A × ω
Fd = 150 N ⋅ s/m × 9.487 mm × 30 rad/s
Fd = 42.692 N

FT = √(Fs
2 + Fd

2)
FT = √[(94.87 N)2 + (42.692 N)2]
FT = 104.033 N.

	

θ θ

θ

θ

T
d

s

T
o

T

a tan
F
F

39.283 a tan
42.692 N
94.87 N

= − 



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= − 



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= 115.055o

6.6.7 U sing Forced Vibration Response to Measure the Properties of a Structure

The natural frequency and damping coefficient of a structure or component can be measured a num-
ber of ways. The simplest one is to attach an accelerometer to a small structure or component and 
‘striking’ it with a ‘calibrated’ hammer. The hammer is a piece of laboratory equipment and is fitted 
with an accelerometer in its head. It is used with a ‘modal analysis testing equipment’. The acceler-
ometer on the structure is used to measure its response. Another method is to attach the component 
or small structure it with a vibrating table which inputs a forced vibration into the item. Again, an 
accelerometer attached to the part measures via the ‘modal analyser’ and the part’s response is mea-
sured as the frequency and amplitude of the vibration are increased.

A third method, which is used for very large structures such as bridges, uses an ‘exciter’ which 
is essentially an electric motor fitted with an out-of-balance mass. By adjusting the position of the 
mass on a crank attached to the motor, the vibration amplitude is adjustable and the speed of the 
motor will vary the frequency.

In the case of measuring the frequency response of the bridge, the exciter is placed at a point 
mid-span. A number of accelerometers are then placed at various points along the structure at 
measured distances from the position of the exciter with one accelerometer positioned close to 
the exciter. Measurements from the accelerometers are recorded for various frequencies and 
amplitudes.

A graph similar to the one shown in Figure 6.46 is plotted from the results. The maximum 
response ‘Xmax’ is measured and a line is drawn at the amplitude Xmax ./ 2  The frequencies ω1 and 
ω2 together with ωmax are then measured as shown in the figure.

The bandwidth of the response (Δω) is defined as

	 Δω = ω2 − ω1	 (6.125)
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Like the logarithmic decrement, the bandwidth is a measure of the damping that exists in the 
system.

The natural frequency and damping coefficient can be estimated using the following formula

	
δ ω

ω≈ ∆
2 max 	

(6.126)

This formula is accurate for small δ – say δ > 0.2.
From the study of steady state response, it can be shown that

	 ω ω δmax = −n 1 2 2
	

(6.127)

and for small δ

	 ω ωmax n ≈ 	 (6.128)

The next stage is to develop an expression relating bandwidth Δω to δ. The frequencies ω1 and ω2 
are calculated next. The maximum amplitude of vibration is calculated by setting ω = ωn, which gives

	
A

K Fo
max = ⋅

−2 1 2δ δ 	
(6.129)

where K = 1/k.

Fmax

Fmax

2
A

m
pl

itu
de

ωnω1 ω2
Frequency

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIGURE 6.46  Bandwidth.
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At the two frequencies of interest, it is known that Ao = Amax/√2; hence, ω1 and ω2 have to be the 
solutions of the equation:
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(6.130)

Rearranging:

	
ω ω ω δ ω δ ω δ4 2 2 2 4 2 4 21

2
2 1 2 8 1 0n n n( ) ( )− − − − =

	
(6.131)

This produces a quadratic equation for ω2 and has the solutions

	
ω ω δ ω δ δ1

2 2 2
1 2

1 2 2 2 1= − − −{ }n n( )
/

	
(6.132)

	
ω ω δ ω δ δ2

2 2 2
1 2

1 2 2 2 1= − + −{ }n n( )
/

	
(6.133)

Expanding both expressions in a Taylor series

	 ω ω δ1 n ≈ −( )1 	 (6.134)

	 ω ω δ2 1≈ +n ( ) 	 (6.135)

Finally,

	 ∆ω ω ω= 2 1– 	 (6.136)

	 ∆ω δω= 2 n 	 (6.137)

EXAMPLE 6.14

Consider an idealised spring–mass–damper structure having a stiffness of 10 kN/m, a mass of 
2000 kg and a damping coefficient of 2 kN ⋅ s. The structure is subject to a harmonic force of 
500 N at a frequency of 0.5 Hz.

Calculate the steady state amplitude of vibration.

Solution

Given that k = 10 kN/m, M = 2000 kg, c = 2 kN ⋅ s/m, F = 500 N, frequency = 0.5 Hz, 
A = 500 N, ω = 0.5 × 2π, ω = π rad/s:

	

ω

ω

n

n

n

k
M

10 kN/m
2000 kg

2.236 rad/s

=

=

=ω
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δ

δ

δ

=
⋅ ⋅

=
⋅ ×

=

=

c
2 k M

24 kN/m
2 10 kN/m 2000 kg

0.224

K
1
k

Steady state amplitude:

	

A
K F

(1 ( / )) (2 ( / ))

A
500 

1

o
2

n
2 2

n
2 0.5

o

= ×

− + ⋅ ⋅ 

= 1 × 10 ×

−

−4

ω ω δ ω ω

π[ 22

2

2 2
0.5

o

2.236
2

2.236

A 43.14 m

]





+ × 0.224 ×

















=

π

mm
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7.1  INTRODUCTION

Automatic control of machines and processes is a fundamental to the successful performance of 
modern industry.

Although an automatic control system was first developed by the Egyptians in the third century 
B.C. with the Ktesibios water clock in Alexandria using a form of a feedback control device, this 
field was largely left alone until 1620 using a closed-loop feedback control for a furnace which is 
attributed to Drebbel and 1788 with the design of a centrifugal flyball governor developed by James 
Watt to regulate the speed of steam engines being built by Boulton and Watt (Figure 7.1).

In 1868, J.C. Maxwell in his paper ‘On Governors’ studied the instability of the flyball gover-
nor using differential equations. This was one of the first papers to use mathematics to describe a 
control system and demonstrate the importance of mathematical models to explain the complex 
phenomena. This signalled the beginning of mathematical control and systems theory. Parts of the 
control theory had appeared earlier but Maxwell’s paper was the first to bring it all together.

Significant developments were made in control theory in the following 100 years in developing 
new mathematical techniques which made it then possible to control more complex dynamic pro-
cesses. These developments included optimal control methods in the 1970s and 1980s which have 
led to safer and more efficient aircraft travel and automotive engines together with more efficient 
(and safer) chemical processes, and the list is expanding.

Modern-day control engineering (also known as control systems engineering) is a relatively new 
field of study that has gained significant attention in other areas than mechanical and electrical engi-
neering such as financial and biological processes being amenable to control techniques.

The function of any control system is to automatically regulate the output of a system and main-
tain it at a desired value. The desired value is the input to the system. If the input is changed, the 
output must respond to the new set value.

There are some basic properties and terminology that are used to model a control system and 
these will be discussed more fully later in this chapter.

7.1.1 B asics of Control Theory

In this section, the reader will be introduced to the basic underlying theory of control systems and 
the terminology used.

To start, there are two general classifications of control systems:

	 1.	Open-loop systems where the control action is independent of the output from the system.
	 2.	Closed-loop systems in which the control action is dependent on the output.

7.1.2  Open-Loop Control System

An open-loop system requires an independent external action to ensure the required output. As an 
example, human intervention is needed when a saucepan is boiling on a heating ring to switch it off 
to prevent it boiling dry.

7
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Open-loop systems have two important features:

•	 They depend on their calibration for accurate operation.
•	 Open-loop systems are not normally affected by stability problems; there is little risk that 

the input will result in an unexpected output.

Figure 7.2 gives an example of an open-loop system.

7.1.3 C losed-Loop Control System

Closed-loop systems are also referred to as ‘feedback’ systems where the output is compared to 
the input into the system. These types of systems are complicated, requiring the use of differential 
equations for their solution.

Figure 7.3 illustrates a typical closed-loop control system using a feedback loop.

7.1.4 C ontrol System Definitions

The following are some basic control system definitions.

7.1.4.1  System
A system is a collection of entities that form and act as a single unit.

7.1.4.2  Input
A signal supplied from an external source to produce a specified response from the control system.

Upper bearing 

Pulley drive from
engine

Rotation

Sliding
sleeve

Pivot

Butterfly valve 

To cylinder
inlet Steam

Lower bearing 

Butterfly valve
control lever

Steam line

Governor balls  

FIGURE 7.1  Centrifugal flyball governor.
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7.1.4.3  Output
The output is the actual response from the control system. It may not be equal to the response 
implied by the input signal.

7.1.4.4  Open Loop
An open-loop control system is one where the control action is independent of the output.

7.1.4.5  Closed Loop
A closed-loop control system is one where the control action is related to the input.

7.1.4.6  Feedback
Feedback is the property of a closed-loop control system where the output signal is compared with 
the input signal to enable an appropriate control action that may be completed in accordance with 
the requirements of the control system.

7.1.4.7  Servomechanism
This is a power-amplifying feedback control system in which the controlled variable is either a 
mechanical position or a time derivative of position such as velocity or acceleration.

7.1.4.8  Regulator
A feedback control system where the reference input is fixed over the operating time period. The 
primary function of the regulator is to maintain a constant output signal.

7.1.5  Feedback Characteristics

A feedback in a control system results in the following advantages:

	 1.	 Increased accuracy: the output can be made to reproduce the input.
	 2.	Reduced sensitivity to system characteristics.
	 3.	Reduction in the effects of non-linearities.
	 4.	 Increased bandwidth: the system can be made to respond to a wider range of frequencies.
	 5.	The major disadvantage of using feedback is the increased risk of instability and the cost 

of implementation.

Process
or

activity 

Input Output 

FIGURE 7.2  Example of an open-loop system.

Comparison

Measurement

Forward path
comparison

Power
amplification
and actuation 

Process
or

activity
Output
sensor

Input Output

FIGURE 7.3  Example of a closed-loop system.
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7.1.6 C ontrol Models

The study of control systems requires a good working knowledge of

	 1.	Differential equations and other mathematical techniques
	 2.	Block diagrams and transfer functions
	 3.	Signal flow diagrams

Block diagrams and signal flow paths are shorthand representations used in the construction of 
schematic diagrams representing the physical system, or the set of mathematical equations that 
characterise the individual component parts of the control system.

7.1.7 B lock Diagrams and Transfer Functions

Any item in any system may be represented by a simple block with arrows representing the direction 
flow of the information or signal. A block with an input and associated output is shown in Figure 
7.4. The block usually contains a description or name of the element or the mathematical operation 
to be accomplished. In this example, the block represents the function

	
G s

x s
F s k

C( )
( )
( )

= = =1

	
(7.1)

In general terms, the input is designated as ‘θi’ and the output as ‘θo’. It may also be seen as ‘θ1’ 
and ‘θ2’, respectively. The ratio of the output to the input is mostly shown as G = θo/θi. When the 
model is a differential equation, the Laplace transform is used which introduces the complex opera-
tor ‘s’. In this case, the ‘G’ is called the ‘transform function’ and is written as

	
G s

s
s

o

i

( )
( )
( )

= θ
θ 	

(7.2)

A generalised feedback control system is shown in Figure 7.5.

F(t)
G(s) = x(s) 1

kF(s)
= = C

x(t)

FIGURE 7.4  Block diagram.

Control
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Feedback
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‘d’ 

Process
 P2

+
–

Reference
input

‘r’

Controlled
output

‘c’ 

Feedback path

Error signal
e = r – d 

Control
output

‘b’

FIGURE 7.5  A generalised feedback control system.
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7.2  ENGINEERING SYSTEM MODELS

When studying control systems, it will be surprising to see the similarity there is between the vari-
ous branches of engineering. The reader will need to have a broad base of knowledge of engineering 
science to understand the various elements and see how many of them are mathematically similar 
to each other.

In this section, different kinds of systems will be reviewed to see how they conform to similar 
laws with clear analogies between them including

•	 Mechanical
•	 Electrical
•	 Thermal
•	 Fluids

The fundamental laws which are used mostly include

•	 Resistance (R)
•	 Capacitance (C)
•	 Inductance (L)
•	 Conservation laws

Table 7.1 shows the equivalent components between the various systems. It will be useful to note 
that capacitance is a zero-order differential equation, and resistance will be a first-order differential 
equation, where as inertia and inductance are second-order differential equations.

7.2.1 S imilarities of Elements between Systems

7.2.1.1  Capacitance
The symbol ‘C’ is used in electrical, thermal and fluid capacitance. Capacitance in mechanical 
systems is equivalent to 1/k, where k is the spring stiffness.

TABLE 7.1
Comparison of Various Quantities between Systems

Mechanical Fluid Thermal Electrical

Spring: Fluid capacitor: Thermal capacitor: Electrical capacitor:

x = C ⋅ F = (1/k) ⋅ F M = C ⋅ Δp Q = CΔT Q = C ⋅ V
Damper:
Force = kd × velocity
F = kd dx/dy
Torque = kd × angular 
velocity

Heat transfer laws: Ohm’s law
Fluid friction laws do not 
conform

ΔT = RΦ
ΔT = R dQ/dt

V = I ⋅ R
V = R dQ/dt

Newtons second law of 
motion:

Fluid interance:
Δp = L d2v/dt2

No equivalence Law of inductors:
V = L d2q/dt2

Force = mass × acceleration  

F = M d2x/dt2      

D’Alembert’s principles:
ΣForce = 0
ΣMoment = 0

Laws of conservation of mass:
ΣMass = constant

Laws of conservation of energy:
ΣEnergy = constant

Kirchoff’s law:
ΣCurrent = 0
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7.2.1.2  Resistance
In electrical and thermal systems, the symbol ‘R’ is used for resistance.

7.2.1.3  Inductance, Inertia and Inertance
‘L’ is the symbol used for electrical inductance and fluid intertance. In mechanical systems, mass 
is an equivalent property used in linear motion and moment of inertia is used for angular motion.

7.2.1.4  Other Symbols Used
Electrical charge and the quantity of heat are symbolised by ‘Q’ and this is also equivalent to dis-
placement in mechanical systems such as distance (usually ‘x’) and angle (usually ‘θ’).

‘V’ is recognised as the symbol for electrical voltage (potential difference or e.m.f.) and has its 
equivalent to temperature in thermal systems. The force ‘F’ in mechanical systems and ‘p’ for pres-
sure in fluid systems are used.

In electrical systems, ‘I’ or ‘i’ is the symbol used in electrical systems for electrical current, 
where the symbol ‘Φ’ is used to symbolise heat flow rate and ‘v’ or ‘u’ is the symbol used for veloc-
ity in mechanical systems.

7.2.2 L aplace Transforms

Laplace transforms have been covered in some detail in Chapter 1, Mathematics and will be touched 
upon in later sections in this chapter.

To recap: the use of Laplace transforms is to allow differential equations to be converted into a 
normal algebraic equation where the quantity ‘s’ is a normal algebraic quantity. It is considered a 
shorthand method for writing differential coefficients, that is,

	

d
dt

can be written as s
θ θ

	

d
dt

becomess
2

2
2θ θ

and

	

d
dt

becomes s
n

n
nθ θ

7.2.3 T ransfer Functions

Models of systems can often be written in the form of the ratio of output/input and if the model 
is turned into a function of ‘s’, it is called a transfer function and will usually be represented 
as G(s).

That is,

	
G s

x
F

s
/k

s M/k s k /kd

( )
( ) ( )

= =
+ +
1

12

In the next section, mathematical models of some basic mechanical systems will be considered.
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7.2.4 L inear Mechanical Systems

7.2.4.1  Spring
The basic law of a mechanical spring (either helical or leaf) is force ∞ change in length. Figure 7.6 
shows the model with the mechanical symbols and with it is depicted as a block diagram in Figure 7.7.

This relationship has no derivatives in that it may be written as a function of either ‘t’ or ‘s’ with 
no transform involved.

•	 As a function of time, it can be written as F(s) = kx(s).
•	 This equation can be rearranged as a transfer function such that (x/F)(s) = 1/k = C.

Where C is the reciprocal of stiffness and is referred to as the mechanical capacitance. The use of 
‘k’ is the preferred symbol in mechanics but ‘C’ is mostly used as it is directly analogous to electri-
cal capacitance.

7.2.4.2  Damper or Dashpot
A damper may be characterised as a piston within a cylinder and moves in a viscous fluid; the force 
is directly proportional to the velocity of the piston.

	 F ∞ v  where v is the first derivative of distance

This equation can be written as

	
F

dx
dt

∝

The basic law of a damper is

	
F k

dx
dt

where k  is the damping coefficientt d d=

When changed into Laplace form

	 F = kd s x

Rearranged into a transfer function

	

x
F

s
k sd

( ) = 1

F(t)

x(t)

k

FIGURE 7.6  Model of a spring.

F(t)

x(t)
G(s) = x(s) 1

kF(s)
= = C

FIGURE 7.7  Block diagram representation for a spring.
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kd is the damping coefficient which has units of force/velocity or N s/m. Figure 7.8 shows the model 
as a mechanical symbol and its equivalent control block.

7.2.4.3  Mass
Newton’s second law of motion states that a force is required to accelerate a mass and is written as 
force = mass × acceleration.

Acceleration is the second derivative of ‘x’ with time.
The basic law is

	
F t M

d x
dt

2

2
( ) =

and when changed into Laplace form

	 F = Ms2x

and rearranged into a transfer function

	

x
F

s
Ms2

( ) = 1

Figure 7.9 depicts the mass under the influence of a force and its equivalent control block.

7.2.4.4  Mass–Spring System
In Chapter 6 on vibrations, the spring–mass system was introduced in which motion only occurs in 
one direction; hence, the system has only one degree of freedom. It is normal for the direction of 
motion to be expressed as the ‘x’ direction, regardless of the actual direction.

Figure 7.10a depicts the spring–mass system and Figure 7.10b the free body diagram. The input 
is a disturbing force ‘F’ which will be a function of time F(t). This disturbing force could be a sinu-
soidal force. The output is a motion ‘x’ which will be a function of time x(t).

kd
F(t) 

x(t)

(a) (b)

G(s) = x(s) 1
kdsF(s)

= = C

FIGURE 7.8  Damper symbol. (a) Schematic for a damper system and (b) the block model for a damper.

Mass
F(t)

x(t)

(a) (b)

G(s) = x(s) 1
Ms2F(s)

=

FIGURE 7.9  Block diagram of a mass subject to acceleration. (a) The free body diagram for a mass subject 
to acceleration and (b) the equivalent block diagram.
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Now, let ‘x’ be a positive direction vertically; the input force is opposed by the spring force and 
inertia force which will always oppose any changes to motion as stated in Newton’s third law of motion.

Hence,

	 Spring force = kx

	
Inertia force M

d x
dt

2

=
2

D’Alambert’s principle states that all forces and moments on a body should equate to zero, which 
in this case means

	
F t kx t M

d x
dt (t)

2

2
( ) ( )− − = 0

or

	
F t M

d x
dt (t)

kx t
2

2
( ) ( )= +

Changing to a function of ‘s’

	 F(t) = Ms2 x + kx

	 = x[Ms2 + k]

	
x s

F
Ms k

( ) =
+2

	
=

+
F /M

s k/M
( )1

2

k

Mass

Movement ‘x’

Datum level

(a) 

Mass

Applied force Movement ‘x’

Spring
force

Inertia
force

Datum level

(b) 

FIGURE 7.10  (a) Physical system and (b) free body diagram for a mass–spring system.
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This may be shown as a transfer function

	
G s

x s
F s

( )
( )
( )

=

	
=

+
1

2

/M
s k/M

Figure 7.11 shows the block diagram.

7.2.4.5  Spring–Damper System
Consider Figure 7.12a.

Force balance as a function of time

	
F t kx kd

dx
dt

( ) = +

Force balance as a function of ‘s’

	 F(s) = kx + kd . sx

Rearranging as a transfer function

	

x
F

s
/k

k /k sd

( )
( )

= +
1

1

The units of kd/k are seconds and this is the time constant for the damped system

	
T

k
k

d=

F(t) x(t)
G(s) = x(s) 1/M

s2 + k/M F(s)
=

FIGURE 7.11  Block diagram for a mass–spring system.

k

kd

x(t)

Spring force

Damping force

(a) (b)

F(t)

F(t) x(t)
G(s) = x(s) 1/k

Ts + 1F(s)
=

FIGURE 7.12  System (a) and block model (b) for a spring–damper.
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The standard first-order equation

	

x
F

s
/k

Ts
( ) = +

1
1

This result will be studied a number of times in the following sections. The block diagram is 
shown in Figure 7.12b.

7.2.4.6  Mass–Spring–Damper System
Figure 7.13a depicts a mass–spring–damper system in which a force ‘F’ is applied to the system 
resulting in a displacement ‘x’, both being a function of time ‘t’.

Hence,

	 Spring force  Fs = kx

	 Damping force  F k
dx
dtd d=

	
Inertia force F M

d x
dti

2

2
=

These three forces oppose the motion of the system; so if the total force acting on the system is 
zero, then

	 F = Fi + Fd + Fs

	
F t M

d x
dt

k
dx
dt

kx
2

2 d( ) = +

	 F(s) = Ms2 x + kd sx + kx

	
G s

x
F

s
/k

s M/k s k /kd

( )
( ) ( )

= =
+ +
1

12

An examination of the units of (M/k)0.5 is in seconds and this is the second-order time constant 
with the symbol ‘T’. Therefore, the transfer function can be written as

	
G s

x
F

s
/k

T s s Ts
( ) ( )= =

+ +
1

12 2 δ

Applied
force
F(t)

Spring force

Damping force 

(a) (b)
kd

x(t)

Mass

k 

F(t) x(t)
G(s) = x(s) 1/k

T2s2 + 2δTs + 1F(s)
=

FIGURE 7.13  (a) Schematic for a spring–mass–damper. (b) Block diagram for a spring–mass–damper.



156 Design Engineer’s Reference Guide

where δ is the damping ratio which is defined as

	
δ = kd

cC
T

where Cc is the critical damping ratio defined as (4Mk)0.5.
The term 2δT is

	
2

2

4

k
C

T
kd M/k

Mk
d

c

=

	

= 2

2

kd M

M k k

	
= k

k
d

Therefore, the foregoing is correct.
Figure 7.13b depicts the block diagram for the transfer function for this type of system. It is a 

second-order transfer function and an analysis of it will be dealt with in more detail later.

EXAMPLE 7.1

A spring–mass–damper system has the following values:
Stiffness (k) = 1000.0 N, mass (M) = 5.0 kg, damping coefficient (kd) = 30.0 Ns/m

	 1.	Calculate:
	 a.	 The time constant
	 b.	 The critical damping coefficient
	 c.	 The damping ratio
	 2.	Derive the equation for the force required when the mass is accelerating.
	 3.	Using the derived equation, evaluate the static deflection when the force ‘F’ = 15.0 N.
	 4.	Using the equation, evaluate the force required to accelerate the mass at 6.0 m/s2 when the 

velocity is 0.70 m/s.

Solution

	 k = 1000.0 N

	 M = 5.0 kg

	 kd = 30.0 Ns/m

	 1.		  T
M
k

s= = =5 0
1000 0

0 0707
.

.
.

	 C Mk  Ns/mc = = ⋅ =4 4 5 1000 141 421. .

	
δ = = =k

C
d

c

30
141 421

0 212
.

.
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	 2.	For a constant acceleration S2X = a (acceleration) and SX = V (velocity)

	 F = k ⋅ X(T2 S2 + 2δT ⋅ S + 1)

	 F = 1000 × X(0.07072 S2 + 2.0 × 212.0 × 0707 S + 1)

	 F = X(5.1409 S2 + 29.9768 S + 1000)

	 F = 5.1409 S2X + 29.9768 SX + 1000X

	 F = 5.1409 a + 29.9768 V + 1000X 

	 3.	For a constant force and a static position, there is neither acceleration nor velocity; there-
fore, the S2 and S terms are zero.

		    Consider the deflection ‘X’ when the force ‘F’ is 15.0 N

	

F
X

N X m mm)= = =1000
15

1000
0 015 15 0, . ( .

	 4.	Force needed to accelerate the mass at 6.0 m/s2 when the velocity is 0.7 m/s

	 a = 6.0 m/s2;  V = 0.70 m/s.

	 F = (5.1409 × 6.0) + (29.9768 × 0.70) + 1000 X

	 F = 30.8454 + 20.9838 + 1000 X

	 F = 51.8292 + 1000 X

		  The deflection ‘X’ will need to be evaluated from x = V2/2a, which in this case yields 
0.0408 m (4.08 mm)

	 F = 92.663 N

7.2.5  Rotary Mechanical Systems

The following work is essentially the rotary equivalent of the previous work.

7.2.5.1  Torsion Bar
A metal rod which is restrained at one end and supports a mass at the other is equivalent to the mass 
and spring (Figure 7.14). If a torque is applied to the rod, a twist will result in the rod. The applied 
torque is directly proportional to the angle of twist and the ratio T/θ is the torsional stiffness of the 
rod and is denoted as ‘k’ as in the linear systems.

The nomenclature used is

T Torque Nm

θ Angle of twist radians

k Torsional stiffness Nm/rad

Equating the torques	 T(t) = kθ (t)
Change to Laplace form	 T(s) = kθ (s)
Write as a transfer function	 θ/T(s) = 1/k
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7.2.5.2  Torsion Damper
Rather like the dampers used in the linear systems which characterise a piston operating in an 
enclosed tube filled with a viscous fluid, the rotary dampers may be idealised using vanes also rotat-
ing in a viscous fluid where the torque required to rotate the vanes is directly proportional to the 
angular velocity. kd is the torsion damping coefficient with values of Nm s/radian.

Hence,

	
T t k

d
dt

T s k s G s
T

s
k sd d

d

( ) , ( ) , ( ) ( )= = = =θ θ θ 1

Figure 7.15a depicts a representation of the torsional damper and Figure 7.15b shows the equiva-
lent block diagram.

7.2.5.3  Moment of Inertia
A rotating mass will oppose the change to rotary motion and Newton’s second law for rotating 
masses may be represented by T I d dt= 2 2θ , where I is the moment of inertia in kg m2.

	
T I

d
dt

T s Is G s
T

s
Is

= = = =
2

2
2

2

1θ θ θ
( ) ( ) ( )

Note: The symbol ‘J’ is also used to represent the moment of inertia.

Figure 7.16a depicts a torsion bar supporting a mass subject to an applied torque and Figure 7.16b 
shows the equivalent block diagram.

7.2.5.4  Geared Systems
Geared system is a common element that is found in many mechanical systems where an inertial 
mass is driven through a gear system via a drive motor, whereas the effect of the inertia is signifi-
cantly altered when the inertia is referred back to the motor.

(a)

Angle of twist ‘θ’

Torque ‘T’

Torsional stiffness ‘k’

T(t) θ(t)

(b)

G(s) = θ(s) 1
kT(s)

=

FIGURE 7.14  (a) and (b): Schematic for a torsion bar.

θ

Torque ‘T’

(a) (b)

T(t) θ(t)
G(s) = θ(s) 1

kdsT(s)
=

FIGURE 7.15  (a) and (b): Schematic for a torsion damper.
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Consider a motor coupled to a load through a set of gears as shown in Figure 7.17. The two bear-
ings provide damping in the system (viscous friction).

θi is the input rotation provided in this case by the motor and θo is the output rotation.
The gear ratio is G /r o i= θ θ . As this is a fixed ratio and is not a function of time, the speed and 

acceleration will also be in the same ratio.
Therefore,

	

d
dt

d
dt

G  is the angular velocityi
i

o
o r

o

i

θ ω θ ω ω
ω ω= = =

	

d
dt

d
dt

G  is the angular accelerationi
i

o
o r

o

i

2

2

2

2

θ α θ α α
α α= = =

The power that is transmitted by a shaft is given by Power = ωT. Where no power is lost, the 
output and input powers must be equal; hence, it follows:

	 ωi Ti = ωo To  therefore

Rotation angle ‘θ’

Moment of inertia ‘I’

Torque ‘T’ 
‘T’

(a)

(b)

G(s) = θ 1
Is2T

=(s)
‘θ’

FIGURE 7.16  (a) and (b): Torsion bar supporting a mass subject to an applied torque.

Motor Ii

θi

θo

Damping kdi

Damping kdo

Driven mass Io

Gear input 

Gear output

FIGURE 7.17  Geared system.
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T

T
i

o o

i

= ω
ω

	 = GrTo

In practice, friction will have a significant effect on torque. The inertia torque due to the inertia 
on the output shaft Io

	

T I

I G
o o o

o r

=
= ⋅

α
α

Torque on the input shaft

	

T T G

I G
i o r

o i r

= ⋅
= ⋅α 2

The damping torque on the output shaft

	 To = kdo ⋅ ωo

	 = kdo ⋅ ωi ⋅ Gr

The damping torque on the input shaft

	

T T G

k G
i o r

do i r

= ⋅
= ⋅ ⋅ω 2

Now considering that there is an inertia and damping torque on the input shaft and on the output 
shaft, the total torque produced on the input shaft:

	 Ti = Ii ⋅ αi + kdi ⋅ ωi + Gr ⋅ To

	 To = Io ⋅ αo + kdoωo

	 Ti = Ii ⋅ αi + kdi ⋅ ωi + Gr{Io ⋅ αo + kdo ⋅ ωo}

	 T I k G I a G ki i i di i r o i r do i= ⋅ + ⋅ + ⋅ ⋅ + ⋅α ω ω2 2

	 T I G I k G ki i i r o i di r do= ⋅ + ⋅ + ⋅ + ⋅α ω( ) ( )2 2

Now ( )I G Ii r o+ ⋅2  is the effective moment of inertia Ie, ( )k G kdi r do+ ⋅2  is the effective damping 
coefficient kde.

The equation may be written

	 Ti = αi(Ie) + ωi(kde)
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and in calculus form this can be written as

	
T

d
dt

I
d
dt

ki

2

e de= +θ θ
2

( ) ( )

Changing this equation into a function of ‘s’

	 Ti(s) = s2θ(Ie) + sθ(kde)

	 = sθ (sIe + kde)

The output is the angular rotation of the input shaft (motor) and the input is the input torque, 
whereas the geared system can be represented as a transfer function.

	

θ( )
( )
s

T s
/I
s

s
k
Ii

e de

e

= +





1

Figure 7.18 represents the above transfer function as a block diagram.

EXAMPLE 7.2

It is required to rotate a Radar aerial through a geared reduction using a DC servo motor.
The system parameters are

•	 Gear reduction ratio is 10:1.
•	 The servo motor has a moment of inertia of 0.5 kg ⋅ m2.
•	 The driven mass has a moment of inertia of 1.2 kg m2.
•	 The damping on the motor is 0.1 Nm ⋅ s/rad.
•	 The damping on the aerial bearings is 0.05 Nm ⋅ s/rad.

Determine the transfer function θ/Tm in its simplest form and calculate the motor torque 
required to

	 1.	Turn the aerial at a constant rate of 0.02 rad/s.
	 2.	Accelerate the aerial at 0.005 rad/s2 when ω = 0.

Solution

	

1.	

	

I I G I

kg m

e i r o= + ⋅

= + ×

= ⋅

( )

( . . )

.

2

2

2

0 5 10 1 2

120 5

1/Ie
s(s + kde / Ie)

θiTi

FIGURE 7.18  Block diagram for a geared example.
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k k G k

Nm s/rad

de di r do= + ⋅

= + ×
=

( )

( . . )

.

2

20 1 10 0 05

5 1

	

θ( )
( )

( )s
T s

/I
s

s
k
Ii

e de

e
= +








1

	

θ
T

s
/I

s s k /Ii

e

de e
( )

( )
=

+
1

	 Ti = Ie ⋅ α + kde ⋅ ω

	 Ti = 120.5α + 5.1ω

		    If the aerial is moving at a constant speed, α is zero. Therefore

	

T

Nm

i =
= ×
=

5 1

5 1 0 02

0 102

.

. .

.

ω

	 2.	When the aerial is accelerating at 0.005 rad/s2, the input (motor) acceleration will be 10 
times larger (0.005 rad/s2 × 10) = 0.05 rad/s2.

	 Ti = 120.5α + 5.1ω

	 = 60.25 Nm  when ω = 0

7.2.6 T hermal Systems

7.2.6.1  Heating and Cooling
If a mass (M) is heated by immersing in a bath of hot fluid (as shown in Figure 7.19), the quantity of 
heat (Q) absorbed by the mass will be a function of the specific heat capacity (C) multiplied by the 
change in temperature from ambient (T1) to the final temperature of the mass (T2).

This can be expressed in algebraic form

	 Q = Mc(T2 − T1)

From the laws of heat transference

	 dQ = Mc dθ1

	 = C ⋅ dθ1

where C = Mc and is the thermal capacitance expressed in joules/kelvin.
Dividing both sides by dt

	

dQ
dt

C
d
dt

= =Φ θ1
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The rate of heat transfer into the mass is Φ = C (dθ1/dt) and the rate of transfer is governed by the 
thermal resistance between the liquid and the mass. Ohm’s law is similar so that

	
Φ = −( )θ θ2 1

R

where R is the thermal resistance in kelvin/watt.
Equating for Φ

	
C

d
dt R
θ θ θ1 1 2= −

	

d
dt RC
θ θ θ1 1 2= −

	

d
dt RC RC
θ θ θ1 1 2+ =

In mechanical, electrical, thermal and fluid systems, the product of resistance and capacitance is 
time constant ‘T’ therefore

	

d
dt T T
θ θ θ1 1 2+ =

Converting from a function of time to a function of ‘s’

	
s

T T
θ θ θ

1
1 2+ =

	 θ1 (Ts + 1) = θ2

Temperature indicator ‘θ1’

M

Mass with resistance
thermometer attached

�ermometer Fluid at temperature ‘θ2’ 

FIGURE 7.19  Diagram for an immersed mass.
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θ
θ

1

2

1
1

( )
( )

s
Ts

= +

Figure 7.20 depicts the block diagram for this transfer function.

Note: The transfer function is the same standard first-order equations that were derived for the 
spring–damper system and the thermal capacitance ‘C’ will be equivalent to 1/k and resistance will 
be equivalent to kd.

7.2.6.2  Process Heating System
In the chemical process industry, precise control of heating being applied to process tanks is essen-
tial, particularly when dealing with volatile solutions such as oil where if overheating occurs would 
lead to a catastrophic event. In dangerous situations, pneumatics are used in preference to electronic 
controllers to reduce the risk of any fire that may occur.

Figure 7.21 shows a schematic diagram of an industrial heater using pneumatics for the control 
of the temperature of a tank of liquid that is heated by steam. The tank is fitted with a temperature 
sensor that sends a signal (within a range of 0.2–1.0 bar) to a temperature controller. The controller 
has an input temperature set by adjusting the control. A pressure sensing device produces another 
pneumatic signal between 0.2 and 1.0 bar depending upon the error that exists between the heating 

(Ts + 1)
1θ2 θ1

FIGURE 7.20  Block diagram for an immersed mass transfer function.

Air-operated valve

Air
supply

Air supply

Air
supply

Steam supply

Heating coil 

Paddle stirrer

Temperature
transmitter
0.2–1.0 bar

Pneumatic controller

Process heater

FIGURE 7.21  Typical pneumatic process heater control circuit.
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tank sensor and the set temperature on the controller. This error signal is then sent to a pneumati-
cally controlled flow control valve and this controls the flow of steam being sent to the heating coils 
within the tank. Generally, these tanks are fitted with stirrers to ensure that the temperature of the 
heated fluid is consistent throughout the tank. Hence, if the temperature sensor within the tank 
senses that the fluid is cooling, then additional steam is introduced to the heating coils and when 
any overheating is detected, the steam flow is reduced.

The model for this system will not be derived here as it is more complicated than simple:

	

θ
θ

1

2

1
1

( )
( )

s
Ts

= +

Generally, these type of controllers are known as three term control (proportional, integration 
and differentiation) and will be covered later in the chapter.

EXAMPLE 7.3

Consider a simple thermal heating system that has a transfer function θ1/θ2 (s) = 1/(Ts + 1).
The temperature of the system is θo and this is at ambient temperature (20°C). When the set 

temperature is changed from 20°C to 100°C, the time constant ‘T’ is 4 s. Deduce a formula that 
shows how the system temperature changes with time.

Solution

	

θ
θ

θ θ θo

i
i o o

T s
 Ts=

+
∴ = +1

1( )

Let θi be a constant (100°C) at all values of time after t = 0 (the start of the change).

	 θi − θo = Tsθo

	
θ θ θ

i o
oT

d
dt

− =

Let θi − θo = x. Differentiating and −dθo = dx, the equation will become

	

x T
d
dt

T
dx
dt

o=

= −

θ

Integrating (without limits):

	
θ =o

t100 80e
t
T

ln x A− − = +− 4 ( )

Substituting for ‘x’:

	
− = − +t

T
Ai oln( )θ θ
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Now, when t = 0 (θo is the starting temperature and is equal to θi),

	
− = − +t

T
0 = Ai iln( )θ θ

	 A = −ln (θi − θi)  (θi − θi = the change in temperature Δθ).

Substituting for ‘A’:

	
− = − −t

T
i oln ( ) ln ( )θ θ θ∆

	
= −

ln
( )θ θ

θ
i o

∆

Taking anti-logs:

	
e t T i o− = −( )θ θ

θ∆

	 ∆θ θ θe t T
i o

− −= ( )

	 θ θ θo i
t Te= − −∆ /

Substituting the value T = 4:

	 Δθ = 100 − 20 = 80

Therefore, θi = 100.
Hence, the law is

	 θ =o
t100 80e− − / 4

Figure 7.22 evaluates and shows the resultant plot.

7.2.7 H ydraulic System

7.2.7.1  Hydraulic Motor
Figure 7.23 is a representation of a hydraulic motor in which an inlet is supplied with pressurised 
fluid at a flow rate Q m3/s, at a pressure of p N/m2. This will result in an output speed ω rad/s at a 
torque T Nm. It is assumed that the motor is 100% efficient and this will result in the outlet pressure 
being zero.

The following derivation of a model is for use in control theory. The formula relates flow rate ‘Q’ 
and the speed of rotation ‘ω’

	

Q k

k
d
dt

q

q

=

=

ω

θ
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kq is a constant known as the nominal displacement and has units of m3 per radian. θ is the angle of 
rotation specified in radians.

Written as a function of ‘s’, this is expressed as

	 Q = kq sθ

If the flow rate is taken as the input and the angle of rotation is taken as the output, the transfer 
function will be

	

G s
Q

k sq

( ) =

=

θ

1

Hydraulic fluid inlet
    Flow rate ‘Q’ m3/s
    Pressure ‘P’ N/m2

Hydraulic fluid outlet

Shaft speed: ‘ω’ rad/s
Shaft torque: N/m 

Driven mass:
I: kg · m2

Motor

FIGURE 7.23  Hydraulic motor.
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FIGURE 7.22  Resultant plot for Example 7.3.
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The following formula relates the system pressure ‘p’ to the output torque ‘T’.

	 T = kq ⋅ p

The input pressure and output torque can be related as

	
G s

T
p

kq( ) = =

This is a further definition of the constant kq.

EXAMPLE 7.4

If a hydraulic motor has a nominal displacement of 10 cm3/radian, calculate the torque the motor 
will produce at a pressure of 110 bar.

Solution

	 T = p ⋅ kq

	 = 110 × 105 (N/m2) × 10 × 10−6 (m3/rad)

	 = 110 N ⋅ m

7.2.7.2  Hydraulic Cylinder
Where the hydraulic motor converts pressure into rotary motion, the hydraulic cylinder converts 
pressure into a linear motion. Figure 7.24a shows the basic elements of a double-acting cylinder.

A single-acting cylinder is similar but hydraulic pressure is only applied to one side of the cyl-
inder and a spring returns the piston to its original position as shown in Figure 7.24b. In some 
instances, the spring may be replaced by a chamber of air.

The following discussion will be restricted to the double-acting cylinder.
The flow rate and piston movement are related by the law:

	
Q A

dx
dt

=

This can be expressed as a transfer function with ‘x’ as the output and ‘Q’ as the input.

	

G s
x
Q

As

( ) =

= 1

Pressure and force are related by the law

	
F

p
A

=

and the corresponding transfer function with ‘p’ as the input and ‘F’ as the output will be

	
G s

x
x T s Ts

G(s)
F
p

Ao

i
2 2

( ) = =
+

= =1
2δ
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7.2.7.3  Directional Valve and Actuator
For a hydraulic cylinder (also referred to as an actuator) to function, a special type of valve, known 
as a directional control valve, is required. This controls the fluid flow from one side of the piston to 
the other.

Figure 7.25 represents such a valve connected to a double-acting cylinder.

Piston area

Pressure: ‘P’ N/m2

Flow: ‘Q’ m3/s
Exhaust

Piston rod
movement
‘x’ metres

Cylinder

Piston and sealPiston rod

(a)

(b)

End cap and piston
rod seal 

Pressure: ‘P’ N/m2

Flow: ‘Q’ m3/s

Helical compression springInflow and outflow

FIGURE 7.24  (a) and (b): Elements of double- and single-acting cylinders.

Drain DrainInflow

Control valve

xi

xo

FIGURE 7.25  Directional control valve and actuator.
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The input to the system is the xi and this allows a flow of fluid into the cylinder of Q m3/s; this 
will force the piston rod to move a distance ‘xo’.

If an assumption is made that for a constant supply pressure the flow rate is directly proportional 
to the valve position, it can be stated that:

	 Q = kv ⋅ xi

kv is the valve constant and the units are m2/s.
Considering Figures 7.24a and 7.25, the area of the piston is A m2.
The velocity of the piston is

	
v

dx
dt

o=

This is related to the fluid flow and the piston area by the laws of continuity such that:

	 Q = kv ⋅ xi

	
= A

dx
dt

o

Changing this to a function of ‘s’, this will become

	 kv xi = As ⋅ xo

Expressed as a transfer function

	

G s
x
x

s

A/k s

o

i

v

( ) ( )

( )

=

= 1

The units of A/kv are seconds and it can be deduced that this is a time constant ‘T’.

	
G s

x
x

s
Ts

o

i

( ) ( )= = 1

Note: This equation is not quite the standard first-order equation 1 1/(Ts + ); the difference in the out-
put is variable for a given input, unlike the previous examples where a limit is imposed on the output.

If the cylinder was replaced by a hydraulic motor, the equation would be similar where the output 
would be measured as an angle instead of linear motion.

EXAMPLE 7.5

A hydraulic cylinder has a bore of 100 mm and is controlled using a directional valve with a con-
stant of 0.3 m2/s.

	 1.	Estimate the time constant ‘T’.
	 2.	Given that xi and xo are zero when t = 0, calculate the velocity of the piston and its output 

position after 0.1 s when the input is changed to 5.0 mm.
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Solution

Area of the piston:

	

A
D

m

=

= × −

π 2

3 2

4
7 854 10. 	

	

T
A
k

s

v
=

= ×

=

−7 854 10
0 3

0 026

3.
.

.

	
G s

x
x

s
Ts

o

i
( ) ( )= = 1

now

	 Ts x xo i⋅ =

	
T

dx
dt

xo
i=

	

dx
dt

velocityo =

	
velocity

x
T

i=

	

velocity
m

m/s

=

=

0 005
0 026

0 191

.
.

.

	
velocity

distance
time

=

	

distance x v t

m

o= = ⋅
= ×
=

0 191 0 1

0 0191

. .

.

7.2.7.4  Directional Control Valve and Actuator Connected to a Mass
Considering that the previous example with a directional control valve is connected to the input 
and output of a double-acting actuator, this next example discusses when a mass is connected to the 
actuator and the mass is subject to a damping force.

Figure 7.26 shows the arrangement with the actuator subject to a hydraulic pressure. The 
applied force is due to the pressure Fd and is determined by the pressure acting on the area ‘A’ 
such that:

	 Fp = pA
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The applied force is opposed by the inertia force Fi and the damping force Fd.

	
F M

d x
dti

o=
2

2

and

	
F k

dx
dtd d

o=

Balancing these forces will give

	
pA M

d x
dt

k
dx
dt

2
o

2 d
o= +

Substituting p = kv ⋅ xi

	
k x A M

d x
dt

k
dx
dtv i

2
o

d
o⋅ ⋅ = +

2

In Laplace form

	 k x A Ms x k sxv i
2

o d o⋅ ⋅ = +

Rearranging into a transform function

	
G s

x
x

s
M/Ak s k /Ak s

o

i v d v

( ) ( )
( ) ( )

= =
+
1

2

Examining the units, it will be found that

	

M
Ak

T where T is a time constant
v

= 2

xo

Supply ‘p’

Drain Drain

Fi

Fd

Fp

Damping ‘kd’

xi

Mass ‘M’

FIGURE 7.26  Double-acting cylinder attached to a mass.
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The critical damping coefficient is

	
C MAkc v= ( )4

and the damping ratio is

	

δk
C

d

c

The transfer function then becomes

	

G s
x
x

s

T s Ts

o

i

( ) ( )=

=
+
1

22 2 δ

The block diagram for this transfer function is seen in Figure 7.27.
There is a similarity with the standard second-order equation 1/(T2s2 + 2δTs + 1). The difference 

is due to there being no limitation on the output.

EXAMPLE 7.6

Consider that a double-acting hydraulic actuator with a bore of 100.0 mm and rod diameter of 
25.0 mm moves a mass of 60 kg. It is fitted with a directional control valve with a constant of 
kv = 200,000 Pa/m. There is a damping coefficient of 160 Ns/m.

Determine the time constant T, Cc and δ.
Given that xi and xo are zero when t = 0, calculate the initial acceleration of the mass when the 

output is changed suddenly to 6.0 mm.
Calculate the acceleration when the velocity reaches 2 mm/s.
Calculate the velocity when the acceleration is zero.

Solution

The piston area (A):

	
A

D d= −π( )2 2

4

	
A = −π( . . )100 0 25 0

4

2 2

	 = 7.363 × 10−3 m2

1
T2s2 + 2δTs

xi xo

FIGURE 7.27  Block diagram for Figure 7.26.
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T

M
Akv

= 





	
=

× ×




−

60
20 000 7 363 10 3, .

	 = 0.638 s.

	 C  MAkc v= ( )4

	 = 187.997 N ⋅ s/m

	
δ = k

C
d

c

	 δ = 0.851

	
G s

x
x T s Ts

o

i
2 2( ) = =

+
1

2δ

or in terms of time

	 xi = (T2 × acceleration) + (2δT × velocity)

The initial velocity is zero.

	 0.005 = T2 a + 0

	 0.005 = 0.6382 a + 0

Therefore,

	 a = 6.939 × 10−3 m/s2

Now when v = 0.002

	 0.005 = T2 a + (2δTv)

	 0.005 = 0.6382 a + (2 × 0.851 × 0.638 × 0.002)

	 a = 6.939 × 10−3 m/s2

The system initially accelerates and will eventually settle down to a constant velocity with no 
acceleration.

Putting ‘a’ = 0

	 0.005 = 0 + (2 × 0.851 × 0.638) × velocity

Hence,

	 Velocity = 0.004602 m/s  or  4.602 mm/s

7.2.8 E lectrical System Models

7.2.8.1  Resistance
When applying Ohm’s law

	
V I R or

V
I

RG s  = 
V
I

s  = sL or s Q2= ⋅ = ( ) ( )
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This equation may be a function of time or ‘s’. The equation may be expressed in term of the 
electrical charge ‘Q’.

Now

	
Since I =

dQ
dt

    I s  = sQ( )

Hence,

	
G s

V
Q

s sR( ) ( )= =

It will be seen that this expression is similar to that of the damper.
Figure 7.28 illustrates the symbol for a resistor.

7.2.8.2  Capacitance
The law for a capacitor is

	
Q = C V

V
Q

 = 
I
C

⋅

This expression is similar to that for a spring.
Differentiating with respect to time

	

dQ
dt

 = C
dV
dt

where dQ/dt is the current ‘I’; hence, the equation can be expressed as

	
I = C

dV
dt

and expressed as a function of ‘s’; this then becomes

	 I(s) = CsV

The transfer function is

	
G s  = 

V
I

s  = 
sC

( ) ( )
1

Figure 7.29 illustrates the symbol for a capacitor.

I R

V

FIGURE 7.28  Schematic for a resistor.
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7.2.8.3  Inductance
From Faraday’s law

	 V = L
dI
dt

 = L
d Q
dt

2

2

This expression is similar to the model for mass and can be expressed as either a first-order or 
second-order equation.

As a function of ‘s’

	 V(s) = L sI  or  Ls2Q

	
G s  = 

V
I

s  = sL or s Q2( ) ( )

Figure 7.30 is the circuit symbol for an inductor.

7.2.8.4  Potentiometer
Figure 7.31 illustrates two versions of a potentiometer:

•	 Figure 7.31a is a linear potentiometer.
•	 Figure 7.31b is an angular version.

In a potentiometer, if the supply voltage is constant and the current is very small or negligible, 
the output voltage ‘V’ is directly proportional to the position ‘x’ or angle ‘θ’.

In this case, a simple transfer function is easily obtained.

	
V V Ve G s

V
x

s  = constant = k  (linear)o i
t T o

p= − −∆ / ( ) ( )=

	
G s  = 

V
s  = constant = k  (angular)o

p( ) ( )θ

V

C 

I

FIGURE 7.29  Schematic for a capacitor.

V

FIGURE 7.30  Schematic for an inductor.
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7.2.8.5  R–C Series Circuit
Figure 7.32 illustrates a typical R–C series circuit in which the sum of the voltage across the resistor 
and the capacitor is

	
V IR

I
Csi = +

	
V I R

Csi = +





1

The output will be the voltage across the capacitor so

	
V

I
Cso =

The transfer function is then

	
G s  = 

V
V

s  = 
I/Cs

I R + 1/Cs
 =  

RCs + 1
o

i

( ) ( ) ( )
1

The units of RC will be seconds and this is another electrical time constant ‘T’. The transfer 
function can be written as

	
G s

V
V

s
RCs 1

o

i

( ) ( )= = +
1

This is a standard first-order equation and is the same as the spring and damper in the thermal 
example.

Vo

VoV

x

0 V 
(a) (b)

V

θ

FIGURE 7.31  Schematics for linear (a) and angular (b) potentiometers.

Vi Vo

I R

C

FIGURE 7.32  Schematic for an R–C circuit.
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7.2.8.6  L–C–R in Series
This is three sub-systems in series. Figure 7.33 depicts such a circuit. In this case, the output is the 
voltage on the capacitor and the input is the voltage across the series circuit.

The input voltage is the sum of all three voltages and is found by summing them

	
V IR IsL

I
sCi = + +

The output voltage is V I/sCo = . The transfer function is

	
G s

V
V

s
I/Cs

I R sL /Cs RCs CLs
o

i

( ) ( )
( )

= = + + =
+ +1

1
12

	
G s

V
V

s
s CL sCR 1

o

i
2

( ) ( )= =
+

1
+

If the units of CL are examined, it will be found to be seconds2 and this is another time constant 
which is defined as T2 = CL, the equation can then be rewritten as

	
G s

V
V

s
T s Ts

o

i
2 2

( ) ( )= =
+ +

1
2 1δ

The damping ratio δ is defined as

	
δ + R

L/C4

The expression 4(L/C) is called the critical damping value.

Note: This is a standard second-order equation and is identical to the mass–spring–damper system.

EXAMPLE 7.7

A capacitance of 300 μF is connected in series with a resistor of 30 kΩ as shown in Figure 7.32.
The transfer function for this circuit is

	

θ
θ

o

i
s

Ts
( )

( )
=

+
1

1

There is a step voltage change from 3 to 10 V across the resistor.

Vi

R

C 

VoL

FIGURE 7.33  Schematic for L–C–R in series.
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Calculate the time constant ‘T’ and derive a formula for how the voltage across the capacitor 
varies with time.

Solution

	 T = RC = 20 × 103 × 200 × 10−6 = 9 s

The derivation follows that used for Example 7.3 where ‘V’ replaces ‘θ’ and the following will 
result

	 V V Veo i
t T= − −∆ /

Substituting the values T = 9

	 ΔV = 10 – 3 = 7  Vi = 10

	 Vo = 10 – 7e−t/9

Figure 7.34 shows the results and corresponding plot for this equation. From the plot, it is 
clearly seen that the curve is converging to a value of Vo = 10 units.

7.2.9 C losed-Loop System Transfer Function with a Unity Feedback

Consider a simple system having an input θi and an output θo. For the system to be controlled where 
the output is to change and match the value of the input which will have a set value, the input will 
need to reflect the error θe instead of the set value. This error will be obtained by comparing the 
output value against the input value using a summing junction (see Section 7.3.3 for a full descrip-
tion). This will produce the result θe = θi – θo and as θo is subtracted from θi, this is referred to as a 
‘negative feedback’. The block diagram shows that the signal is returned around a closed loop to the 
summing junction, hence the name ‘closed-loop system’.

t sec’s Vo

0 3.000
2 4.395
4 5.512
6 6.406
8 7.122

10 7.696
12 8.155
14 8.522
16 8.817
18 9.053
20 9.241
22 9.393
24 9.514
26 9.611
28 9.688
30 9.750

V o

Time (s)

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0
0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0

FIGURE 7.34  Results for Example 7.7.
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Figure 7.35 shows the representative block diagram for such a system. This particular system is 
known as a ‘unitary feedback system’ as the feedback loop does not contain any processing element 
shown in the feedback loop (this will be discussed in more detail in Section 7.3.4).

	
G s o

e

( ) = θ
θ

Substitute θe = θi – θo.

	
G s o

i o

( ) = −
θ

θ θ

Divide the bottom line by θo.

	
G s

/i o

( )
( )

= −
1

1θ θ

Let

	

θ
θ

i

o G s
− 1

1=
( )

	

θ
θ

i

o G s
 = 

G s
G s

and invert= + +1
1

1
( )

( )
( )

	

θ
θ

o

i

G s
G s

 = +
( )

( )1

or

	

θ
θ

o

i /(G s
= +

1
1 1( ) )

The transfer function for a closed-loop system with a unitary feedback is θ
θ

o

i /(G s
.= +

1
1 1( ) )

The transfer function for the open-loop system is G(s).
Considering the hydraulic valve and actuator as discussed in Section 7.2.7.3, when the actuator 

and valve are turned into a closed-loop system, the two transfer functions become

	
G

Ts
for the first-order version and G

T s
2 Ts 1 focl cl= = + +1

1
1
2 2+ δ rr the second-order version.

_ 

Summing
junction 

G(s)+

Feedback loop 

Input 
Output

θo

θe
θi

FIGURE 7.35  Closed-loop system with unity feedback.
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It will be seen that these two models are mathematically similar to the transfer function for the 
mass–spring–damper and L–C–R circuits.

EXAMPLE 7.8

An open-loop circuit has a transfer function G s /(s s( ) ).= + +2 2 12  Determine the closed-loop 
transfer function when the feedback is unity.

Solution

	
G

/(G s
cl =

+
1

1 1( ) )

	
=

+ + +
1

2 1 2 12((s s /) )

	
=

+ + + +
2

2 1 2 12s s

	
=

+ + +
2

2 1 32s s

7.3  BLOCK DIAGRAM AND TRANSFER FUNCTION MANIPULATIONS

In Section 7.2, block diagrams and transfer functions were introduced for various mechanical, 
hydraulic and electrical systems.

In this section, the reader will be introduced to ‘open loop’ and ‘closed loop’ control systems and 
the use of transfer functions in the study of these systems, but first a distinction needs to be made 
between these two types of systems.

To start, there are two general classifications of control systems:

	 1.	Open-loop systems where the control action is independent of the output from the system.
	 2.	Closed-loop systems in which the control action is dependent on the output.

7.3.1  Open-Loop Control System

An open-loop system requires an independent external action to ensure the required output. As an 
example, human intervention is needed when a saucepan is boiling on a heating ring to switch it off 
to prevent it boiling dry.

Open-loop systems have two important features:

	 1.	They depend on their calibration for accurate operation.
	 2.	Open-loop systems are not normally affected by stability problems; there is little risk that 

the input will result in an unexpected output.

Figure 7.36 gives an example of an open-loop system.

7.3.2 C losed-Loop Control System

Closed-loop systems are also referred to as ‘feedback’ systems where the output is compared to 
the input into the system. These types of systems are complicated, requiring the use of differential 
equations for their solution.

Figure 7.37 illustrates a typical closed-loop control system using a feedback loop together with 
its corresponding block as shown in Figure 7.38.
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7.3.3 S umming Junctions

In order for a control system to be regulated, the error between the output and input needs to be 
determined.

The summing junction is used to represent the addition or subtraction of signals.
Arrows are necessary to represent the direction of signal flow. Each incoming arrow has a sign 

associated with it to indicate whether the signal is positive or negative. The summing junction gen-
erally has two or more inputs and one output to which the sum of the inputs are routed as shown 
in Figure 7.39a and b. Figure 7.39a depicts a junction adding the two inputs together for a positive 

Speed 
Servo motor 

Power input to
servo motor 

Signal input
to motor 

Power input
to amplifier

Potentiometer Power amplifier 

FIGURE 7.36  Open-loop control circuit.

Encoder 

Potentiometer
θi

θo

Power amplifier 

Servo motor 

Power input to
servo motor 

Power input
to amplifier

Angle Differential amplifier

Signal input
to motor 

Feedback signal

FIGURE 7.37  Closed-loop control circuit.

Servo motor Power amplifier Potentiometer 

Encoder 

Angle Input Error 
P 

Vo

ViVe + _ θo θo

FIGURE 7.38  Bloch diagram for the closed-loop circuit in Figure 7.37.
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output and Figure 7.39b subtracting the two inputs. In general, the junction shown in Figure 7.39b 
is the most common junction used in negative feedback systems. Very occasionally, the junction 
shown in Figure 7.39a may be found in positive feedback systems, but these will not be discussed in 
this chapter as they are specialised control techniques.

7.3.4 C losed-Loop System Transfer Functions

The basic block diagram for a closed-loop system with unitary feedback is shown in Figure 7.40. 
The main block is an open-loop system with a transfer function Gol. This relates the output and the 
error so that Gol = θo/θi.

The transfer function for a closed-loop system is Gcl. The input θi is related to the output θo.
By comparing the output value with the input value, the error is obtained in the summing junc-

tion. This will produce the result θe = θi – θo and as θo, is subtracted, this is referred to as ‘negative 
feedback’. The block diagram shows that the signal is passed around a closed loop and this is known 
as a ‘closed loop’ system.

The system shown in Figure 7.40 is said to have a ‘unitary feedback’ as there is no processing 
shown in the feedback path.

The following is an important result for all closed-loop systems and will be used later.

	
G s

k
T s Ts2 2

( )
( )

=
+ 2δ

	 θe = θi − θo

	
Gol

o

i o

= −
θ

θ θ

	 Gol (θi − θo) = θo

+ _ + 
+ 

Input 
(a) (b)

Output 

Feedback
from output 

Feedback
from output 

Output Input 
θo = θi + θo θo = θi – θo

θo θo

θiθi

FIGURE 7.39  Summing junctions for (a) positive and (b) negative feedback.

Summing
junction 

Gol+ _ 
Output 

Feedback 

Input 
θi θo

FIGURE 7.40  Basic block diagram for a closed loop with unity feedback.
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	 Gol θi − Gol θo = θo

	 Gol θi = θo + Gol θo

	 Gol θi = θo (1 + Gol)

	
Gcl

o

i

= θ
θ

	
G

G
Gcl
ol

ol

= +1

	
G

/Gcl
ol

= +
1

1 1( )

This is the transfer function for a closed-loop unity feedback system, although in practice there 
will be a transducer to measure the output; therefore, a block in the feedback loop should be shown 
to represent the transducer as shown in Figure 7.41. There may be other signal processing instru-
mentation in the path such as amplifiers or signal conditioners and these will also need to be shown. 
In the figure, G1 has been substituted in place of Gol; this is the open-loop transfer function and is in 
the forward path and G2 is in the feedback path.

The open-loop transfer function can be related to G1 and G2 as follows:

	
G o

e

= θ
θ

	 θe = θi − G2 θo

	
G

G
o

i o
1

2

= −
θ

θ θ

	 G1 (θi − G2 θo) = θo

	 G1 θi − G1 G2 θo = θo

	 G1 θi = G1 G2 θo + θo

	 G1 θi = θo (1 + G1 G2)

_ 

Feedback 

+ 
Output 

Summing
junction 

Input 
G1

G2

θo

θe
θi

FIGURE 7.41  Basic block diagram for a closed loop with processor in the feedback loop.
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G

G
G G

o

i

= = +
θ
θ

1

1 21

This is the transfer function for the closed system.

7.3.5 V elocity Feedback

When a system is unstable and tends to oscillate, a technique used to stabilise the system is to use 
velocity feedback. If the output is a motion xo, the rate of change dxo/dt will be a true velocity.

A typical servo system uses both position and velocity feedback as shown in Figure 7.42. The 
velocity signal is generated from a tacho-generator or another suitable speed measuring device. The 
resulting signal is compared with the input and output and the resulting error signal will be

	
x x k x k

dx
dte i 2 o

o= − − 1

When a step change is made to the input, the error will be a maximum so the output will change 
very rapidly. The velocity feedback will be greatest at the start. The effect of the feedback will be 
to reduce this error directly proportionally to the velocity. When the output is static, the feedback 
will be zero and therefore no error will result. The feedback will have the same effect as damping 
and if an analysis is completed, it will be seen that there will be control over k1 giving control over 
damping. This method is very useful for stabilising an oscillating system.

EXAMPLE 7.9

Figure 7.43 depicts a closed-loop control system having both velocity and negative feedback. The 
transfer functions for the system is G(s) = k/(T2 s2 + 2δ Ts). It is required to derive the closed-loop 
transfer function.

Servo_ + 
_ 

Potentiometer

Controller

Tachometer

xo

xo
xexi

k2 xo

k1

xo

dxo
dt

FIGURE 7.42  Block diagram for a closed-loop system with velocity feedback.

_ +

dxo
dt

θo

θeθi System G(s)

Tachometer

α θo

FIGURE 7.43  Closed-loop circuit for Example 7.8.
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Solution

The open-loop transfer function is given as

	
G s

k
T s Ts2( )

( )
=

+2 2δ

	

θ
θ δ α

o

i
2 2

k
T s s T k k

=
+ + +( )2

	 θe = θi − θo − (αs + 1)

	 θo = Gθe = G[θi − θo (αs + 1)]

	 θo = Gθi − Gθo (αs + 1)

	 θo + Gθo (αs + 1) = Gθi

	 θo[1 + G(αs + 1)] = Gθi

	

θ
θ α

o

i

G
G s

=
+ +1 1( )

	

θ
θ α

o

i /G s
=

+ +
1

1 1( )

Substituting G
k

T s Ts2=
+( )2 2δ

	

θ
θ δ α

o

i
2 2[T s Ts]/k s

=
+ + +

1
2 1( )

	

θ
θ δ α

o

i
2

k
T s Ts k s

=
+ + +2 2 1( )

	

θ
θ δ α

o

i
2

k
T s s T k k

=
+ + +2 2( )

This is the closed-loop transfer function.
The term with ‘s’ is the effective damping term and is affected by the value of kα.

7.3.6 D isturbance

Figure 7.44 characterises the effect on the output signal by a disturbance.
The disturbance ‘d’ is added to the output ‘θ’ to produce a new output θo.
G is the forward path transfer function

	 θe = θi – θo

	 θo = θ + d
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	 θ = Gθe

	 θo = Gθe

	 θo = Gθe + d

	 θo = G(θi – θo) + d

	 θo = Gθi – θo + d

	 θo(1 + G) = Gθi + d

	
θ θ

o
i  

G d
G

= +
+

( )
( )1

EXAMPLE 7.10

A simple closed-loop circuit as shown in Figure 7.44 consists of an amplifier with a gain of 10. 
For an input of 4 mA, show the effect of a disturbance when added to the output with a mag-
nitude of

	 1.	0
	 2.	2

Solution

	 1.	Let G = 10, θi = 4, d = 0.

	
θo = × +

+
( )

( )
10 4 0

1 10

	
θo = 40

11

	 2.	Let G = 10, θi = 4, d = 2

	
θ θ

o
iG d

G
= +

+
( )
( )1

	
θo = × +

+
( )

( )
10 4 2

1 10

d

G(s)+ _ +
+Input Output 

Feedback

θoθi
θe θ

FIGURE 7.44  Closed-loop circuit subject to a disturbance.
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θo = 42

11

This result shows that a disturbance of 2 will produce an output error of 2/11.

7.3.6.1  To Eliminate the Effect of a Disturbance
To reduce or eliminate the effect of a disturbance acting on the output, it is possible to introduce a 
special feedback path. Figure 7.45 shows the idealised system.

The disturbance ‘D’ in this case is processed through a transfer function ‘G2’ and this is added 
to the input. With G1 as the forward path transfer function, G2 is the feedback path transfer function.

	 θ = G1 θe = G1 (θi − G2 D)  θo = θ + D

	 θo = G1 (θi − G2 D) + D  θo = G1 θi − G1 G2 D + D

From the last line, it will be seen that if G1G2D = D, then θ = G1θi. The effect of the disturbance 
will be completely removed when G1 = 1/G2.

EXAMPLE 7.11

For the system described in Section 7.3.6.1, the forward path transfer function is

	
G

s 7s 60s s 60s
 G (s)

(s+1)3 2 2 2 1=
+ +

=
+

=12
4

12
4

4
3

Determine the transfer function for the feedback path to eliminate the effects of the disturbance 
acting on the input.

Solution

	
G s

G s
s

1
2

1 1
4

( )
( )

( )= = +

7.3.7 P roportional and Differential Control

A transfer function used in process engineering is the proportional plus differentiation (P + D) 
transfer function. Figure 7.46 depicts the block diagram for this function.

D

θ
θoθi

θe G1

G2

+ _ +
+Input Output

G2D

FIGURE 7.45  Closed-loop circuit elimination of disturbance.

k1
D 

k1D

FIGURE 7.46  Feedback diagram for proportional control.
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For a proportional system, the output is directly proportional to the input; it can be considered as 
an amplifier or attenuator with k1 as a simple ratio.

Figure 7.47 shows a differential block in which the output is proportional to the rate of change 
of the input with time. Fitting a tachometer to the output is such an example. In Laplace form, the 
output is k2sD.

The units of k2 are in seconds and can be written as k2 = Tk1 where T is the time derivative.
Proportional control can be combined with differential control and Figure 7.48 illustrates such a 

block. For P + D, it follows that the transfer function is k1 (Ts + 1).

EXAMPLE 7.12

Given that the open-path transfer function is G1 = 5/(s + 2), determine the value of the time deriva-
tive ‘T’ and the constant which will eliminate the disturbance ‘D’.

Figure 7.49 illustrates the block diagram.

Solution

	
G

G
s

2
1

1 2
5

= = +( )

	 G2 = k1 (Ts + 1)

Rearranging so that the forms match

	 0.2(s + 2) = k1(Ts + 1)

	 0.4(0.5 s + 1) = k1(Ts + 1)

Hence, by comparison, k1 = 0.4 and T = 0.5.

k2
D

dD
dt

k2

FIGURE 7.47  Feedback block diagram for differential control.

P + D 
D k1 (Ts + 1)D

FIGURE 7.48  Feedback block diagram for proportional and differential control.

+
++

+

D

D 

θoθi
θe G1

k1 (Ts + 1)D 

G1 θe
Input Output 

P + D 

FIGURE 7.49  Closed-loop circuit for Example 7.11.
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7.3.8 S implifying Complex Systems

The symbol ‘H’ is commonly used for the feedback transfer function but any appropriate letter can 
be used to help simplify complex circuits.

Figures 7.50 through 7.52 show the stages in simplifying a block diagram to a single block with 
one transfer function.

EXAMPLE 7.13

Consider the block diagram shown in Figure 7.53a and derive the transfer function with

	
G

s
G

s
G  = 4, G

s
H 5,  H 0.53 4 1 21 2

3 1
4 5

1= =
+

,
( )

, ,= = =

Solution

Figure 7.53c shows the simplification of the block diagram that is shown in Figure 7.53a to a single 
block and transfer function.

Substituting the above data results in

	
D

/( s
/( s s /( s s

1
4 4 5

1 4 0 5 4 5
4

4 5 1 2 4 5
4

4 7
= +

+ × +
=

+ + +
=

+
)

[( . ) )] ( )[ ( ))]

G1 G2+
–

H

θo θo

θo

θi θi

θi

G = G1 G2+
–

H 

(a) (b) 

(c) 
G

1 + GH1

FIGURE 7.50  (a), (b) and (c): Reducing a block diagram, complexity (1).

G1 G2 G3
θi θiθo

θo
G = G1 G2+

–

H 

(a) (b) 

+

H 

θi θo

(c) 

G G3
1 + GH1

FIGURE 7.51  (a), (b) and (c): Reducing a block diagram, complexity (2).
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3 4 4 7
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12 4 7

1 60 4 7
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4 7 4 7
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+
+
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=
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12
4 7 60

12
4 673 2 2 3 2

/( s

G
s s s s s

+

=
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=

++

(a)

(b)

(c)

–

+
–

G1
θi

θi

θi

θo

θo

θoG2 G3

H2

H1

G4G1

H1

G4

G1D1 G4

1 + H1G1D1
G =

G2G3

1 + G2G3H2
D1 =

FIGURE 7.53  (a), (b) and (c): Reducing a block diagram for Example 7.13.

_ _ +

(a)

(b)

(c)

G1
θi

θi

θi

θo

θo

θo
+

+
–

G2

H2

H1

G4G1
G1D1 G4

1 + H1G1D1
G =

H1

G3 G4

G1D1 G4

1 + H1G1D1
G =

FIGURE 7.52  (a), (b) and (c): Reducing a block diagram, complexity (3).
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Heat and Temperature

8.1  HEAT

Matter is made up of molecules that are continuously in a state of movement; the amount of move-
ment is dependent on how much energy the matter possesses. As more energy is added, the mol-
ecules become more active, moving around very rapidly, and the hotter the matter becomes.

As energy is removed from the matter or body, the molecules become less active, their speed 
reduces and the matter then becomes colder.

Heat energy may be added to a body by a number of means including the direct application of a 
flame, electrical resistance, friction and so on.

8.1.1 T emperature

The heat of a body may be determined by measuring it using a thermometer. The most common 
thermometers used consist of a liquid (usually alcohol) within a glass tube that is closed at both ends 
and evacuated of air. These liquid thermometers are based on the principle of thermal expansion. As 
a substance is heated, it expands to a greater volume. Nearly all substances exhibit this behaviour of 
thermal expansion and are the basis of the design and operation of all liquid thermometers. There 
are other types of thermometers that give a digital readout of the temperature and these rely on the 
change of electrical resistance of a wire, usually platinum.

Another type of thermometer depends upon the electromagnetic force change with temperature 
of two distinct metals (copper and iron) that are joined together using solder.

The ends of the wires are connected to a galvanometer and as the junction is heated, a current 
flows within the circuit causing the galvanometer to deflect.

All thermometers have to be calibrated so that they will measure absolute temperatures and 
this is undertaken by measuring two distinct temperatures. First, the thermometer (or junction) is 
immersed in freezing liquid that is on the point of thawing and the level of the liquid is measured. 
The thermometer is then immersed in boiling water and the second measurement is then made. 
These measurements are made at an atmospheric pressure of 1 atm.

8.1.1.1  Temperature Scales
There are currently three main temperature scales used in engineering and science for measuring 
temperature:

Celsius:  For thermometers measuring in the Celsius scale, the freezing water is marked at 
0 and the boiling point of water is marked at 100. The scale is then divided into 100 equal 
divisions between the marks. Accurate measurements can then be made of the temperature 
of any object within the temperature range for which the thermometer has been calibrated.

Fahrenheit:  In a similar manner to that described above, the freezing point of water is 
measured at 32°F and boiling point of water at 212°F. The scale is then divided into 180 
divisions.

Kelvin:  While the Celsius and Fahrenheit scales are widely used today, there are other 
scales that have been developed; the Rankine scale, the Newton scale and the Romer 
scale. All of these are very rarely used today. Yet another scale, the Kelvin temperature 

8
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scale, has been adopted as the standard metric system of temperature measurement and 
is possibly the scale most widely used by engineers and scientists. The Kelvin scale is 
similar to the Celsius scale in that there are 100 divisions between the freezing and boil-
ing points of water. However, the zero degree mark on the Kelvin scale is 273.15 units 
cooler than it is on the Celsius scale. Hence, the temperature of 0 Kelvin is equivalent to 
a temperature of −273.15°C. Note that the degree symbol is not used on the Kelvin scale, 
so that a temperature of 250 units above 0 Kelvin is referred to as 250 Kelvin and not 
as 250° Kelvin; the temperature is abbreviated as 250 K. Conversions between Celsius 
temperatures and Kelvin temperatures can be performed using one of the two following 
equations:

	 °C = K − 273.15°	 (8.1)

	 K = °C + 273.15°	 (8.2)

		    The zero point on the Kelvin scale is referred to as ‘absolute zero’ and it is the tempera-
ture where all movement of molecules making up matter becomes stationary. Currently, 
engineers and scientists have been able to lower the temperature to just above the absolute 
zero point but as yet not quite reached it.

8.1.1.1.1  Converting between Temperature Scales
Celsius scale:  To convert from degrees Celsius to degrees Fahrenheit, the following equa-

tion is used:

	 °F = (1.8 × °C) + 32	 (8.3)

EXAMPLE 8.1

Convert 20°C to the equivalent scale in Fahrenheit.

	 °F = (1.8 × 20) + 32

	 = 68°F

Fahrenheit scale:  Temperatures measured in the Fahrenheit scale can be converted to the 
equivalent Celsius scale using the following formula:

	
° °
C

F= −( )
.

32
1 8 	 (8.4)

EXAMPLE 8.2

Convert 68°F to the equivalent scale in Celsius.

	
°C = −( )

.
68 32

1 8

	 = 20°C

8.1.2 T hermal Expansion

Thermal expansion can affect solids, liquids and gases and there will be a change in dimension 
when there is a change in temperature. When there is an increase in temperature in a solid, there 



195Heat and Temperature

will be an increase in the length, thickness and height. When the substance is either a liquid or gas, 
it is more useful to describe the expansion in terms of a change in volume.

The thermal expansion is generally uniform in all dimensions; there will be different expansion 
coefficients and these are characteristic for elements and compounds. Table 8.1 tabulates the coef-
ficients for thermal linear expansion for a range of materials.

For a solid, the changes in the characteristic dimensions are due to a change in temperature:

Linear expansion:

	 ∆ ∆L L To= α 	 (8.5)

Area:

	 ∆ ∆A A To= 2α 	 (8.6)

Volumetric:

	 ∆ ∆L L To= 3α 	 (8.7)

EXAMPLE 8.3

A steel bridge is built in several sections; each section is 20 m long. The expansion gap between 
each section is 30 mm at an ambient temperature of 18°C. Determine the maximum temperature 
that can withstand before buckling occurs.

Solution

From Equation 8.5:

	 ∆ ∆L L To= α

where
α °= −12 0 6. mm per C
T1 = 18.0°C
ΔL = 20,000 mm × 12.0−6 mm per °C (T2 − 18.0)

TABLE 8.1
Thermal Expansion Coefficients for Various Materials

Material Linear α(10-6 K-1) Material Linear α(10-6 K-1)

Aluminium 23.1 Silver 18.9

Brass 20.3 Solder (lead–tin) 25.0

Carbon (graphite) 6.5 Steel, stainless 17.3

Chromium 4.9 Steel, structural 12.0

Copper 16.5 Tin 22.0

Gold 14.2 Titanium 8.5

Invar (64% Fe, 36% Ni) 1.2 Tungsten 4.5

Iron 11.8 Uranium 13.9

Lead 28.9 Water, ice (0°C) 51.0

Nickel 13.3 Zinc 30.2
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Hence,

	
T C

mm
mm mm/ C

2 618 0
30 0

20 000 12 0
= +

× −.
.

( , . )
°

°

	 T2 = 143°C

The highest temperature on the earth was in Death Valley in California with a temperature of 
56.7°C (134°F), which has a good temperature reserve factor.

8.1.3 H eat Capacity

The total heat capacity (C) of a body is the amount of heat energy required to raise the temperature 
of the body by 1 degree. It is expressed in Joules per degree K (J ⋅ K−1).

The specific heat capacity (c) of a substance is the heat required to raise a unit mass (m) through 
1 degree; it is the heat capacity per unit mass of the substance and its units are expressed in either 
Joule per gramme per degree K (J g−1 K−1) or Joule per kilogramme per degree K (J kg−1 K−1). The 
specific heat of water (cw) is approximately 4200 J kg−1 K−1.

The kilocalorie is the amount of heat required to raise 1 kilogramme of water by 1 degree 
Celsius. In SI units, the calorie is equivalent to 4.184 J. These reversible conversions of work and 
heat energy are called the ‘mechanical equivalent of heat’.

From the definition of specific heat capacity, it follows that:

	 Heat capacity, C = mass × specific heat capacity	 (8.8)

As an example, the specific heat capacity of copper is 0.39 J g−1 K−1 or 390 J kg−1 K−1.

	

The heat capacity of 5 kg of copper

J K

kJ K

= ×
=
=

−

5 390

1950

1 95

1

. −−1

Table 8.2 gives the specific heat capacities for a range of materials.

TABLE 8.2
Specific Heat Capacities for Various Materials

Material Sp Ht: J kg-1 K-1 × 103 Material Sp Ht: J kg-1 K-1 × 103

Aluminium 0.91 Solder 0.18

Brass 0.38 Glass 0.70

Copper 0.39 Ice 2.10

Iron 0.47 Rubber 1.70

Steel 0.45 Stone 0.90

Lead 0.13 Wood 1.70

Mercury 0.14 Alcohol 2.50

Nickel 0.46 Ether 2.40

Platinum 0.13 Paraffin oil 2.10

Silver 0.24 Turpentine 1.76
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EXAMPLE 8.4

It is required to raise the temperature of 20 kg of steel from a temperature of 20°C to 250°C.
From Table 8.1, the specific heat of steel is 450 J/kg °C.
Estimate the amount of heat required.

Solution

From Equation 8.8

	 C = m × c (T2 − T1)

where
C = total heat energy in Joules, (J)
m = mass of material (20 kg)
c = specific heat capacity in J/kg °C (450 J/kg °C)
(T2 – T1) = temperature difference (250°C – 20°C)
C = 20 kg × 450 J/kg °C × (250 – 20)°C

= 2.07 MJ

8.1.4 H eat Transfer

Heat is transferred from one location to another by one of three methods:

•	 Conduction
•	 Convection
•	 Radiation

8.1.4.1  Conduction
Consider an iron bar that is partially placed in a furnace to heat an area of the bar for a blacksmith 
to work on.

The heat from the furnace will travel along the bar gradually before it becomes too hot to hold 
the bar comfortably.

The transfer rate (H) is the ratio of the amount of heat per time for the heat to transfer from one 
location to another; this may be expressed as

	
H

Q
t

= ∆ 	
(8.9)

where
H has units of J/s or Watts
Q is in Joules
t is in seconds

There has to be a temperature difference for conduction to take place as heat will only flow from 
a hot body to a cold body and not the other way around.

Considering that the iron bar has a length (L) and a cross-sectional area (A), the heat conduction 
along the length of the bar is given by

	
H

Q
t

kA
T T

L
= = −

∆
( )2 1

	
(8.10)
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where heat flows from position T2 to T1 and T2 > T1 as shown in Figure 8.1.
The constant (k) is called ‘thermal conductivity’. Table 8.3 gives values of thermal conductivities 

for a range of materials.
It will be noted that the metal materials have a far higher conductivity constant than liquids or 

other non-metal materials.

8.1.4.2  Convection
Liquids and gases are fluids. The particles in these fluids can move from place to place. Convection 
occurs when particles with a lot of heat energy in a liquid or gas move and take the place of particles 
with less heat energy. Heat energy is transferred from hot places to cooler places by convection.

Liquids and gases expand when they are heated. This is because the particles in liquids and gases 
move faster when they are heated than they do when they are cold. As a result, the particles take 
up more volume. This is because the gap between particles widens, while the particles themselves 
stay the same size.

The liquid or gas in hot areas is less dense than the liquid or gas in cold areas, so it rises into the 
cold areas. The denser cold liquid or gas falls into the warm areas. In this way, convection currents 
that transfer heat from place to place are set up.

8.1.4.3  Radiation
Thermal radiation is a process by which energy, in the form of electromagnetic radiation, is emitted 
by a heated surface in all directions and travels directly to its point of absorption at the speed of 
light; thermal radiation does not require an intervening medium to carry it.

Thermal radiation ranges in wavelength from the longest infrared rays through the visible-light 
spectrum to the shortest ultraviolet rays. The intensity and distribution of radiant energy within 
this range is governed by the temperature of the emitting surface. The total radiant heat energy 
emitted by a surface is proportional to the fourth power of its absolute temperature (the Stefan–
Boltzmann law).

T2 T1

L

Cross-sectional area ‘A’ 

FIGURE 8.1  Heat conduction along an iron bar.

TABLE 8.3
Thermal Conductivities for a Range of Materials

Material ‘k’ (W m-1 K-1) Material ‘k’ (W m-1 K-1)

Aluminium 210 Platinum 0.13

Brass 109 Silver 420

Copper 380 Solder 55 (approx.)

Iron (pure) 76 Glass 1.1

Iron (wrought) 59 Ice 2.10

Steel 46 Rubber 1.70

Lead 35 Wood 0.21

Mercury 9.2 Alcohol 0.18

Nickel 87 Paraffin oil 0.13
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	 E T= σ 4
	 (8.11)

where
E is the radiant heat energy emitted from a unit area in one second.
σ is the constant of proportionality (the Stefan–Boltzmann constant).
T is the absolute temperature (Kelvin).

The constant has a value of 5.6704 × 10−8 Wm−2 ⋅ K−4.
The law applies only to blackbodies and theoretical surfaces that absorb all incident heat radia-

tion. The rate at which a body radiates (or absorbs) thermal radiation depends upon the nature of the 
surface as well. Objects that are good emitters are also good absorbers (Kirchhoff’s radiation law). 
A blackened surface is an excellent emitter as well as an excellent absorber. If the same surface is 
silvered, it becomes a poor emitter and a poor absorber. A blackbody shown in Table 8.4 gives a 
comparison between two radiant surfaces.

A fire in an open grate is an excellent example of thermal radiation as the heat is felt directly 
without any intervening fluid in between the radiant and the recipient.

A common misconception in home heating is the use of the word ‘radiator’. This is a thin panel 
fed using hot water; radiators are often painted with white gloss paint. They would be better at 
radiating heat if they were painted with black matt paint, but in fact, despite their name, radiators 
transfer most of their heat to a room by convection.

TABLE 8.4
Comparisons between Two Radiator Surfaces

Colour Finish Ability to Emit Thermal Radiation Ability to Absorb Thermal Radiation

Dark Dull or matt Good Good

Light Shiny Poor Poor
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Thermodynamic Basics

9.1  INTRODUCTION

9.1.1 W hat Is Thermodynamics?

Thermodynamics is the branch of physics that studies the effects of temperature and heat on physi-
cal systems at the macroscopic scale. In addition, it also studies the relationship that exists between 
heat, work and energy.

Thermal energy is found in many forms in today’s society including power generation of elec-
tricity using gas, coal or nuclear, heating water by gas or electric, rocket propulsion, astronomy and 
cosmology, amongst many others.

9.1.2 B rief History

Engineering thermodynamics has its beginnings in the 1800s at the start of the industrial revolution 
in the UK when Thomas Newcomen (1712) designed and manufactured the first atmospheric steam 
engine, later improved by James Watt around 1764; this work laid the foundations for the develop-
ment of the steam engine.

Although Thomas Savery (1650–1715) is acknowledged as the true inventor of the steam engine 
in 1698, he built the world’s first commercially useful steam engine. It was originally intended for 
pumping water out of deep mines. The machine did not have a piston and relied on the opening and 
closing of various valves to direct the steam into the standing water, forcing it out in the exhaust.

In 1824, Sadi Carnot (1796–1832) published a paper entitled ‘Reflections on the Motive Power 
of Fire’ and this was cited to be the starting point for thermodynamics as a modern science. James 
Joule (1818–1889) together with Herman Helmholtz (1821–1894) independently formulated the rela-
tionship between heat and mechanical work. This discovery led to the theory of conservation of 
energy resulting in the first law of thermodynamics.

Josiah Willard Gibbs (1839–1903) is considered to be one of the founders of modern thermody-
namics and a pioneer in graphical methods for thermal sciences and gives his name to the ‘Gibbs 
Phase Rule’.

In 1862, James Clerk Maxwell put forward the philosophical argument that both light and radiant 
heat were forms of electromagnetic waves and this then led to the start of the quantitative analysis 
of thermal radiation. Jožef Stefan further observed that the total radiant flux from a black body is 
proportional to the fourth power of its temperature. This work was derived theoretically in 1884 by 
Ludwig Boltzmann and is known as the Stefan–Boltzmann law.

In later years, many workers have developed the theory of thermodynamics in a much wider field 
covering other sciences including astronomy and medical research.

9.2  BASIC THERMODYNAMICS

9.2.1 B asic Concepts

Properties are characteristics of a system which include mass, volume, energy, pressure and tem-
perature. Thermodynamics also considers other quantities that are not physical properties, such as 

9
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mass flow rates and energy transfers by work and heat. Properties are also considered to be either 
intensive or extensive.

Table 9.1 lists various quantities used in thermodynamics together with their units.

9.2.2 E xtensive

An extensive property is one that is divisible in size; for example, volume when divided will become 
smaller. Mass and energy are other examples.

9.2.3 I ntensive

Intensive properties are those that are independent of the size of the system; for example, tempera-
ture, pressure and density of a substance will remain unchanged when divided into smaller masses.

TABLE 9.1
Symbols Used in Thermodynamics and Heat Transfer

Quantity Units Derived Units S.I. Symbol

Absolute temperature K T

Adiabatic index γ
Area m2 A
Celsius temperature °C θ
Characteristic gas constant N m/kg K J/kg K R
Density kg/m3 ρ
Dynamic viscosity N s/m2 Pa s η or μ
Energy N m/kg K Joule
Enthalpy N m Joule H
Entropy J/K S
Force kg m/s2 N F
Heat transfer N m Joule Q
Heat transfer rate N m/s Watt Φ
Internal energy N m Joule U
Kinematic viscosity m2/s v
Length m Various
Mass kg m
Mass flow rate kg/s
Polytropic index n
Pressure N/m2 Pascal p
Pressure head m h
Specific enthalpy N m/kg J/kg h
Specific entropy J/kg K s
Specific heat capacity m/s Joule/kg K c
Specific internal energy N m/kg J/kg u
Specific volume m3/kg ν
Time s t
Universal gas constant J/kmol K Ro

Velocity m/s2 v or u
Volume m3 V or Q
Volumetric flow rate m3/s
Weight kg m/s2 N W
Work N m Joule W

Work rate (power) N/m/s Watt P
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9.2.4 S pecific and Total Quantities

These relate only to extensive properties.
A specific quantity represents in the case of, say, mass, the quantity per kg and is obtained by 

dividing the property by the mass. These properties are designated by lower case letters, such as ‘v’ 
for the specific volume (m3/kg) and ‘h’ for specific enthalpy (J/kg).

Total quantity is always designated by higher case letters, say ‘V’ for volume (m3) and ‘H’ for 
enthalpy (J).

Specific volume is principally used for gases and vapours. The inverse of a specific volume is 
density (ρ) (kg/m3) and this property is chiefly used for solids and liquids but can also be used for 
gases (ρ = 1/v).

As the same letter is often used to designate more than one property, quite often alternative letters 
are used. As an example, ‘v’ for specific volume may occur in the same work as velocity, and ‘u’ and 
‘c’ are sometimes used for velocity to avoid confusion in the case of initial velocity and final velocity.

9.2.5 E nergy Forms

Fluids and solids can possess several forms of energy. All fluids possess energy due to their tem-
perature and this is referred to as ‘internal energy’. They will also possess ‘gravitational or potential 
energy’ (PE) due to distance (z) above a datum level and if the fluid is moving at a velocity (v), it will 
also possess ‘kinetic energy’. If the fluid is pressurised, it will possess ‘flow energy’ (FE).

Pressure and temperature are the two governing factors and internal energy can be added to FE 
to produce a single property called ‘enthalpy’.

In the following paragraphs, each of these terms will be considered in more detail.

9.2.6 I nternal Energy

The molecules of a fluid possess both kinetic energy (KE) and PE relative to an internal datum. 
Generally, this is regarded simply as the energy due to its temperature and the change in internal 
energy in a fluid that undergoes a temperature change is given by

	 ΔU = mcΔT	 (9.1)

The total internal energy is denoted by the symbol ‘U’, which has values of J, kJ or MJ; also the 
specific internal energy ‘u’ has the values of kJ/kg.

Note: The change in temperature is in either degrees Celsius or Kelvin. The law which states inter-
nal energy is a function of temperature only; this is known as ‘Joule’s Law’ and is independent of 
its volume and pressure.

9.2.7 G ravitational or Potential Energy

When a mass ‘m’ kg is raised to a height of ‘z’ metres above a datum level, a lifting force is required. 
This force obviously has to be greater than the mass being lifted.

The work done in raising the mass is force × distance moved, so

	 Work = mgz  where g is the gravity constant	 (9.2)

As energy has been used to do this work and cannot be destroyed, it will follow that energy has 
been stored in the mass. This energy is called the ‘gravitational energy’ or ‘potential energy’ (PE).

	 PE = mgz	 (9.3)
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9.2.8 K inetic Energy

If a mass ‘m’ kg is at rest and is then accelerated ‘a’ to a velocity ‘v’ m/s, a force ‘F’ is required to 
provide the acceleration. This force is given by Newton’s second law of motion:

	 F = m . a	 (9.4)

After a time ‘t’ seconds, the mass will have travelled a distance of ‘x’ metres and have reached a 
velocity of ‘v’ m/s. These two quantities are related by the laws

	
a

v
t

=
	

(9.5)

	
x

v . t
2

=
	 (9.6)

The work done in accelerating the mass

	
P

F
A

=
	

(9.7)

Energy has been expended in doing this work and has therefore been stored in the mass and will 
be carried along with it. This energy is called ‘kinetic energy’.

	
KE

m . v
2

2

=
	

(9.8)

9.2.9  Flow Energy

When fluid is pumped under pressure along a pipe or conduit, energy has been used to do the pump-
ing. This energy is contained within the fluid and may be recovered as an example using a hydraulic 
cylinder.

Consider a piston pushing fluid within a cylinder. Fluid pressure is ‘P’ N/m2 and the force 
required by the piston is

	 F = P . A	 (9.9)

where
P = fluid pressure
A = internal area of the pipe or conduit

When the piston has moved a distance of ‘x’ metres, the work done is

	 W = F . x = P . A . x	 (9.10)

Since A . x = Vol and is the volume pumped in the cylinder, the work done is

	 W = PVol	 (9.11)

Energy has been used in doing this work and it is stored in the fluid as ‘flow energy’:

	 FE = P . Vol	 (9.12)

9.2.10 E nthalpy

As stated in Section 9.2.5, Enthalpy (H) requires both pressure and temperature; it therefore must 
possess both flow (FE) and internal energy (U). These two energies are added together

	 H = FE + U	 (9.13)

The units are J for the total enthalpy or kJ/kg for the specific enthalpy.
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9.2.11 G as Laws

In this section, a ‘perfect gas’ will be discussed and the following will be considered:

•	 Derive the basic gas laws.
•	 Derive the characteristic gas law.
•	 Examine the universal gas law.
•	 Define the ‘mol’.

9.2.12 T heory

A gas is made up of molecules which are consistently moving around in a random manner. In a per-
fect gas, these molecules may collide but will have no tendency to join or repel each other. In reality, 
there is a small force of attraction between the gas molecules but as this force is so small, gas laws 
formulated for a perfect gas work quite well for a practical gas.

Each molecule possesses an instantaneous velocity and hence has KE. The sum of this energy 
is the internal energy ‘U’. The velocity of the molecule will depend upon the temperature. When 
there is a change in the temperature, there will be a corresponding change in the internal energy. 
The internal energy is for all intents and purposes zero at −273°C. This temperature is known as 
absolute zero or 0 to K.

(Remember when converting from °Celsius to Kelvin to add 273 to the Celsius temperature.)

9.2.13 P ressure

When a fluid or a gas is compressed, it acquires pressure (‘P’). Consider a gas within a closed con-
tainer or vessel. The molecules bombard the inside of the container and each collision produces a 
momentum force. The force per unit area is the pressure of the gas:

	
P

F
A

=
	

(9.14)

where
F = force
A = area

The unit of pressure in SI units is N/m2 or Pascals.

9.2.14  A Perfect Gas

A perfect gas is one in which its working temperature is well above its critical temperature and 
obeys the following:

•	 Boyle’s law.
•	 Charles’s law.
•	 Joule’s law of internal energy.
•	 Dalton’s law of partial pressures.
•	 Its specific heat is constant.

To obey these laws, the gas would

•	 Not change its state even at absolute zero.
•	 The distance between its molecules needs to be so far apart as not to have any intermolecu-

lar forces or collisions.
•	 At normal pressures and temperatures, the permanent gases such as oxygen, nitrogen, 

helium and so on closely obey these laws and are known as ‘semi-perfect’ gases.
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9.2.15 B oyle’s Law

Boyle’s law states that provided the temperature ‘T’ of a perfect gas remains constant, the volume 
‘V’ of a given mass of gas is inversely proportional to its pressure ‘P’ of the gas, that is, P /V∝ 1  
(as shown in Figure 9.1) or P × V = constant if the temperature remains constant.

If the gas experiences a change in state during an isothermal process, then

	 P1V1 = P2V2 = constant	 (9.15)

Representing the process on a graph having axes of pressure ‘P’ and volume ‘V’, the result will 
be as shown in Figure 9.2. The curve is known as a rectangular hyperbola and has the mathematical 
equation x . y = constant.

EXAMPLE 9.1

A certain perfect gas is heated at a constant temperature from an initial state of 0.22 m3 and 
325 kN/m2 to a final state of 170 kN/m2. Determine the final pressure of the gas.

Solution

State 1: P1 = 325 kN/m2 and V1 = 0.22 m3.
State 2: P2 = 170 kN/m2 and V2 = ?
From the equation, P1 ⋅ V1 = P2 ⋅ V2

	
V   V   

P
P

2 1
1

2
= ×

	

V
T

V
T

constant1

1

2

2
= =

P ∝ 1/V 

P 

1/V 

FIGURE 9.1  Graph of P ∝ 1/V.

PV = constant 

P 

1/V 

P1

P2

P3

V1 V2 V3

1 

2 

3 

FIGURE 9.2  Graph of PV = constant.
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V 0.22 m

325 kN/m
170 kN/m

2
3

2

2= ×

	 V2 = 0.4206 m3

9.2.16 C harles’s Law

Charles’s law states that provided the pressure ‘P’ of a given mass of gas remains constant, the vol-
ume ‘V’ of the gas will be directly proportional to the absolute temperature ‘T’ of the gas, that is, 
V ∞ T, or V = constant × ‘T’. Therefore, V/T constant=  for a constant pressure ‘P’.

If the gas experiences a change in state during a constant pressure process, then

	

V
T

V
T

constant1

1

2

2

= =
	

(9.16)

This process is represented on a graph as shown in Figure 9.3.

EXAMPLE 9.2

A quantity of gas is subjected to a constant pressure process causing the volume of gas to reduce 
from 0.54 m3 at a temperature of 345°C to 0.32 m3. Calculate the final temperature of the gas at 
the end of this process.

Solution

From the question

	 V1 = 0.54 m3

	 T1 = 345 + 273 K

	 V2 = 0.32 m3

Now

	

V
T

V
T

constant1

1

2

2
= =

	

T T
V
V

618 K
0.32 m
0.54 m

T 366.22K

2 1
2

1

3

3

2

= ×

=




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=

1 2

V1 V2
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P 

FIGURE 9.3  P–V graph of constant pressure.
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9.2.17 U niversal Gas Law

The universal gas equation combines pressure, volume and temperature and the relation between 
Boyle’s and Charles’s laws is expressed in Equation 9.17

	

P . V
T

constant R= =
	

(9.17)

where R is known as the universal gas constant. That is

	

P V
T

P V
T

1 1

1

2 2

2

=
	

(9.18)

EXAMPLE 9.3

A volume of gas at a pressure of 325 kN/m2 and temperature of 618 K is compressed to a volume 
0.16 m3 and a pressure of 380 kM/m3. Determine the final temperature of the gas.

Solution

State 1: P1 = 325 kN/m3, V1 = 0.22 m3 and T1 = 618 K.
State 2: P2 = 380 kN/m3, V2 = 0.16 m3 and T2 = ?

From Equation 9.18:

	

PV
T

P V
T

1 1

1

2 2

2
=

	
T

618 K 380 kN/m 0.16 m
325 kN/m 0.22 m

2

2 3

2 3= × ×
×

	 T2 = 525.52 K

Gases, in practice, do not obey this law rigidly but many do tend towards it. This law is also 
referred to as the characteristic equation of state of a perfect gas.

The constant ‘R’ is called the gas constant and its units are Nm/kg K or J/kg K. Each perfect gas 
will have a different gas constant.

The characteristic gas equation is usually written as

	 PV = RT	 (9.19)

or for ‘m’ kg, occupying V m3

	 PV = mRT	 (9.20)

The characteristic gas equation can be expressed in a different form which is derived using the 
kilogramme-mole as a unit. The kilogramme-mole is defined as a quantity of gas equivalent to m 
kg of the gas, where M is the molecular weight of the gas. Oxygen has a molecular weight of 32; 
hence, 1 kilogramme-mole of oxygen is equivalent to 32 kg of oxygen.
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From the definition of the kilogramme-mole, for ‘m’ kg of the gas

	 m = nM	 (9.21)

where n is the number of moles.

Note well: As the standard of mass in SI units is the kilogramme (kg), the kilogramme-mole will 
be written as ‘mole’.

Substituting for m from Equation 9.21 in Equation 9.20

	
P . V nMRT or MR

P . V
nT

= =
	 (9.22)

Avogadro’s hypothesis states that the volume of 1 mole of any gas will be the same as the 
volume of 1 mole of any other gas when the gases are at the same temperature and pressure. 
Therefore, V/n is the same for all gases at the same values of P and T.

The quantity PV/nT is a constant for all gases. This constant is called the ‘universal gas constant’ 
and has the symbol ‘Ro’.

	
MR R

PV
nT

o= =
	 (9.23)

or

	 PV = nRoT	 (9.24)

As MR = Ro, then

	
R

R
M

o=
	

(9.25)

It has been shown by experiment that the volume of 1 mole of any perfect gas at a pressure of 
one bar and at a temperature of one degree C is approximately 22.71 m3.

	 From Equation 9.24:

	
R

PV
nT

o =

	
= × ×

×
1 10 22 71

1 273 15

5 .
.

	  = 8314.11 J/mole K

The gas constant can be found for any gas when the molecular weight is known using the 
Equation 9.25. The molecular weight for oxygen is 32; hence, the gas constant is

	
R

R
M

o=

	
= 8314 11

32
.

	  = 259.81 J/kg K
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EXAMPLE 9.4

The volume of a gas at 0.046 m3 is contained in a sealed cylinder under a pressure of 300 kN/m2 
at a temperature of 45°C. The gas is then compressed until a pressure of 1.27 MN/m2 at a tem-
perature of 83°C is reached. Assuming the gas is a perfect gas, given R = 0.29 kJ/kg K, calculate

	 1.	The mass of the gas (kg)
	 2.	The final volume of the gas (m3)

Solution

	 State 1: V1 = 0.046 m3, P1 = 300 kN/m2 and T1 = 273 + 45.0 K = 318.0 K.
	 State 2: P2 = 1.27 MN/m2, T2 = 273 + 83.0 K = 356.0 K and R = 0.29 kJ/kg K.

	 1.	From Equation 9.20:

	 PV = mRT

	
m

PV
RT
1 1

1
=

	
= ×

×
300 0 046
0 29 318

.
.

	  = 0.1496 kg

	 2.	From Equation 9.16:

	

V
T

V
T

1

1

2

2
=

	
V V

T
T

2 1
2

1
= 





	
V 0.046 m

356 K 
318 K 

2
3=







	 V2 = 0.051 m3

9.2.18 S pecific Heat Capacity

The specific heat capacity of any substance is defined as the amount of energy required to raise a 
unit mass through one degree temperature rise. In thermodynamics, there are two specified condi-
tions used:

	 1.	Constant volume (Cv)
	 2.	Constant pressure (Cp)

The two specific heat capacities do not have the same value, and it is very important to distin-
guish between them.
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9.2.19 S pecific Heat Capacity at Constant Volume (Cv)

Consider one kg of a gas supplied with an amount of heat energy sufficient to raise its temperature 
by 1 K while the volume of the gas constant, the amount of heat energy supplied, is known as the 
specific heat capacity at constant volume and is denoted by Cv. The basic unit of Cv is J/kg K.

For a reversible non-flow process at constant volume:

	 dQ = mCvdT	 (9.26)

For a perfect gas, the value of Cv will be constant for any one gas at all pressures and tempera-
tures. Equation 9.26 can be expanded as follows.

Heat flow in a constant volume process between two states:

	 Q12 = mCv(T2 − T1)	 (9.27)

From the non-flow energy equation:

	 Q − W = (U2 − U1)

	 mCv(T2 − T1) − 0 = (U2 − U1)

	 (U2 − U1) = mCv(T2 − T1)	 (9.28)

that is

	 dU = Q	 (9.29)

Note: In a reversible constant volume process, there will be no work energy transfer as the piston 
will be unable to move; therefore, W = 0.

Figure 9.4 shows the P–V diagram for the reversible constant volume process.

EXAMPLE 9.5

A quantity of 4.5 kg of gas is heated at a constant volume of 1.5 m3 and temperature 20°C until the 
temperature rose to 150°C. If the gas is assumed to be perfect, determine

	 1.	The heat flow during the process
	 2.	The pressure at the beginning of the cycle
	 3.	The final pressure

1

2

V1 = V2
0 V

P

P1

P2

FIGURE 9.4  P–V graph for the reversible constant volume process.
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Given:

Cv = 0.72 kJ/kg K and R = 0.287 kJ/kg K.

Solution

m =  4.5 kg

V1 =  1.5 m3

V2 =  1.5 m3

T1 =  20 + 273 = 293 K

T2 =  150 + 273 = 423 K

Cv =  0.72 kJ/kg K

R =  0.287 kJ/kg K

	 1.	From Equation 9.27:

	 Q12 = mCv(T2 − T1)

	  = 4.5 kg × 0.72 kJ/kg K × (423 – 293) K

	  = 421.2 kJ

	 2.	From Equation 9.20, PV = mRT

	 For state 1:

	 P1V1 = mRT

	
P

mRT
V

1
1

1
=

	
P

4.5 kg 0.287 kJ/kg K 293K
1.5 m

1 3= × ×

	 P1 = 252.27 kN/m2

	 3.	For state 2:

	 P2V2 = mRT

	
P

mRT
V

2
2

=

	
P

4.5 kg 0.287 kJ/kg K 423K
1.5 m

2 3= × ×

	 P2 = 364.20 kN/m2

9.2.20 S pecific Heat Capacity at Constant Pressure (Cp)

When 1 kg of a gas is supplied with an amount of heat energy sufficient to raise the temperature 
by 1 K while the pressure of the gas remains constant, the amount of heat energy that is supplied is 
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known as the specific heat capacity at constant pressure and is denoted by Cp. The unit of Cp is J/
kg K.

For a reversible non-flow process at constant pressure:

	 dQ = mCpdT	 (9.30)

For a perfect gas, the value of Cp is constant for any one gas at all pressures and temperatures. 
Equation 9.20 can be expanded as follows:

In a reversible constant pressure process, the heat flow

	 Q = mCp(T2 − T1)	 (9.31)

9.2.21  Relationship between the Specific Heats

Consider a perfect gas being heated at constant pressure from T1 to T2. Referring to the non-flow equa-
tion, Q = U2 – U1 + W and the equation for a perfect gas, U2 – U1 = mCv(T2 – T1), combining will give

	 Q = mCv(T2 – T1) + W

In a constant pressure process, the work done by the fluid is given by

	 W = P . ΔV

that is

	 W = P(V2 – V1)	 (9.32)

Using the equation PV = mRT:

	 W = mR(T2 – T1)	 (9.33)

Substituting:

	 Q = mCv(T2 – T1) + mR(T2 – T1)

	  = m(Cv + R)(T2 – T1)	 (9.34)

Equating (9.31) and (9.34) for the heat flow ‘Q’:

	 mCp(T2 – T1) = m(Cv + R)(T2 – T1)

Therefore,

	 Cp = Cv + R	 (9.35)

This equation may also be written as

	 R = Cp − Cv	 (9.36)
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9.2.22 S pecific Heat Ratio ‘γ’

The ratio of specific heat at constant pressure to the specific heat at constant volume is given by the 
symbol ‘γ’ (gamma).

	
γ =

C

C
p

v 	
(9.37)

From Equation 9.25, it is clear that Cp has to be greater than Cv for a perfect gas. It follows, 
therefore, that the ratio Cp/Cv = γ is always greater than unity. In general, ‘γ’ is approximately 1.4 for 
diatomic gases such as carbon monoxide (CO), hydrogen (H2), nitrogen (N2) and oxygen (O2). For 
monatomic gases such as argon (A) and helium (He), γ is approximately 1.6 and for triatomic gases 
including carbon dioxide (CO2) and sulphur dioxide (SO2), γ is about 1.3.

Some useful relationships between Cp, Cv R and γ can be derived from Equations 9.36 and 9.37.

	 Cp – Cv = R

Dividing through by ‘Cv’:

	

C

C
1

R
C

p

v v

− =

Now from Equation 9.57:

	

γ

γ

γ

=

− =

= −

C

C

R
C

C
R

p

v

v

v

1

1( ) 	
(9.38)

Also from Equation 9.37, Cp = γCv and substituting in Equation 9.38:

	
C C

R
p v= = −γ γ

γ( )1

	
C

R
p = −

γ
γ( )1 	

(9.39)

EXAMPLE 9.6

A particular perfect gas has a specific heat as follows:

	 Cp = 0.846 kJ/kg K  and  Cv = 0.657 kJ/kg K

Determine the gas constant and the molecular weight of the gas.

Solution

From Equation 9.36

	 R = Cp – Cv
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that is

	 R = 0.846 – 0.657
	  = 0.189 kJ/kg K

or R = 189 Nm/kg K.
From Equation 9.25

	
M

R
R

o=

that is

	
M

8314.4
189

=

	  = 44.0 kg/kmol

9.3  LAWS OF THERMODYNAMICS

9.3.1 C onservation of Energy

The law of conservation of energy was first formulated in the nineteenth century.
This law states that the total energy of an isolated system remains constant regardless of changes 

within the system. An alternative way of stating this is that energy is a quantity that can be con-
verted from one form to another, but cannot be created nor destroyed.

It was Gottfried Wilhelm Leibniz during the period from 1676 to 1689 who first attempted a 
mathematical formulation of the kind of energy which is connected with motion (KE). Leibniz 
noticed that in many mechanical systems (of several masses, mi each with velocity vi), ∑ i i im v2  was 
conserved so long as the masses did not interact. He called this quantity the vis viva or living force 
of the system. The principle represents an accurate statement of the approximate conservation of KE 
in situations where there is no friction.

9.3.2  First Law of Thermodynamics

From the Equation 9.40, it is seen that in terms of heat flow and work output into and out of the engine, 
the system is in a state of balance. This state is known as the ‘steady state’ and can be explained by 
the ‘First Law of Thermodynamics’ which states that the first law is a consequence of energy and 
requires that a system may exchange energy with its surroundings strictly by heat flow or work.

Thus,

	 ΔE = ΔQ – ΔW	 (9.40)

where
ΔE is the change in energy
ΔQ is the change in heat
ΔW is the change in work

9.3.3 S teady Flow Process

The process which changes the state of a thermodynamic system can be divided into two main types 
depending upon whether the system is an open or closed system.

9.3.4  Flow Process

A flow process is known as an open system where work energy, heat energy and the working fluid 
may be transferred across the boundary (Figure 9.5).
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General energy equation

	
gZ U p V

C
2

Q gZ U p V
C
2

W1 1 1 1
2 2

2 2+ + + + = + + + +1
2

2
2

	
(9.41)

where
gZ1 = potential energy
U = internal energy

	
C
2

kinetic energy
2

=

Equation 9.40 may be written as

	
gZ h

C
2

Q gZ h
C
2

W1 1 2 2+ + + = + + +1
2

2
2

	
(9.42)

where U + pV = h = enthalpy.
Enthalpy is a measure of the total energy of a thermodynamic system. It includes the internal 

energy, which is the energy required to create a system, and the amount of energy required to make 
room for it by displacing its environment and establishing its volume and pressure.

Enthalpy is a thermodynamic potential. It is a state function and an extensive quantity. The unit 
of measurement for enthalpy in the International System of Units (SI) is the joule.

9.3.5 C onsider a Boiler at Constant Pressure

Figure 9.6 depicts a boiler supplying steam with water and heat being supplied.
Applying the general energy equation:

•	 PE is small when compared with the heat energy being supplied and therefore can be neglected.
•	 KE is also very small and is neglected.
•	 As there are no working parts, ‘W’ = 0.

The equation can now be written in the following manner

	 h1 + Q = h2	 (9.43)

	 Q = h2 − h1  (for Mkg flow of fluid)

	 ∴  Q = M(h2 − h1)	 (9.44)

P2

V2

U2

C2

Fluid in

Fluid out 

P1

V1

U1

C1

Z1

Z2

W 

Q Datum 

System or control volume

FIGURE 9.5  Thermodynamic process.



217Thermodynamic Basics

EXAMPLE 9.7

A boiler operating at a constant pressure of 1.5 MPa evaporates fluid at the rate of 1000 kg/h. 
At the boiler inlet, the entering fluid has an enthalpy of 165 kJ/kg. At the exit to the boiler, the 
enthalpy of the exiting steam is 2200 kJ/kg. Calculate the heat energy required by the boiler.

Solution

From the general energy equation

	
Q W M (h h )

C C
2

2 1− = − + −

















2
2

1
2

	 1.	For the boiler, (C C )/22
2

1
2−  is assumed to be zero.

	 2.	No working or moving parts; therefore, W = 0.

Where
Q = heat energy per hour required by the boiler
W = work energy leaving the system = 0
m = fluid flow rate = 1000 kg/h
h1 = enthalpy at inlet = 165 kJ/kg
h2 = enthalpy at outlet = 2200 kJ/kg

Hence,

	     Q = 1000(2200 – 165) kJ/h
	 Q = 2.035 × 106 kJ/h

If 60% of the heat energy supplied to the boiler is used in evaporating the fluid, calculate the 
rate of fuel consumption required to maintain the rate of evaporation when 1 kg of fuel produces 
30,000 kJ of heat energy.

	

Heat energy required per hour
2.035 10

0.60
3.392 10 kJ/h

6

6

= ×

= ×

The heat energy available from the fuel

	  = 30,000 kJ/h

System Boundary 

Heat in (Q)

Water in

Steam out

2

2

1

1

FIGURE 9.6  Boiler supplying steam.
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Hence

	

Fuel required
3.392 10

30,000
kJ
h

kg
kJ

113.1kg/h

6

= × ×

=

EXAMPLE 9.8

A condenser has fluid flowing through it at the rate of 35 kg/min. The fluid enters with a specific 
enthalpy of 2500 kJ/kg and leaves with a specific enthalpy of 250 kJ/kg. Calculate the rate of heat 
energy loss from the system.

Solution

The steady FE equation gives

	
Q W m (h h )

C C
2

2 1− = − + −

















� 2
2

1
2

For a condenser, W = 0 and the terms representing the change in KE and PE may be neglected. 
The equation will reduce to

	 Q m(h h )2 1= −�

Hence,

	
Q 35

kg
min

(250 2500)
kJ
kg

= −

	 Q = −78,750 kJ/min

9.3.6 N ozzle

A nozzle is an efficient way to convert thermal energy into KE.
Figure 9.7 depicts a convergent nozzle with a mass flow of fluid passing through it. The steady 

FE equation gives

	
Q W m (h h )

C C
2

(gZ gZ )2 1 2 1− = − + −





+ −








� 2

2
1
2

•	 The average velocity of the fluid through the nozzle will be high and only spends a short 
duration within the nozzle. As a result, it is considered that there is not sufficient time for 
any heat energy to flow either into or out of the fluid; as a result, it is considered that ‘Q’ = 0.

1 2 

Fluid in Fluid out

Area:  A1 Area:  A2

FIGURE 9.7  Mass flow through a convergent nozzle.



219Thermodynamic Basics

•	 As a nozzle has no moving parts, hence no work energy will be transferred to or from the 
fluid as it passes through the nozzle; therefore, ‘W’ = 0.

•	 PE is generally small and can be neglected.

The equation becomes

	

0 m (h h )
C C

22 1= − + −













� 2

2
1
2

	
(9.45)

Often C1 is negligible compared with C2, and in this case the equation will reduce to

	

0 m (h h )
C
22 1= − + 













� 2

2

	
(9.46)

or

	

C
2

(h h )1 2
2
2

= −
	

(9.47)

Equation 9.47 can also be rewritten as

	
C 2(h h )2 1 2= −

	
(9.48)

EXAMPLE 9.9

Fluid flowing through a horizontal nozzle has the following properties:

	 1.	At the inlet to the nozzle, the fluid has a specific enthalpy of 2800 kJ/kg with negligible 
velocity.

	 2.	At its outlet, the fluid has a specific enthalpy of 2250 kJ/kg and its specific volume is 
1.25 m3/kg.

Calculate the required area of the nozzle assuming the flow is adiabatic.

Solution

From the steady FE equation:

	
Q W m (h h )

C C
2

(gZ gZ )2 1 2 1− = − + −





+ −












� 2
2

1
2

When this equation is applied to the nozzle, it becomes

	
0 m (h h )

C C
2

2 1= − + −

















� 2
2

1
2

As the inlet C1 is negligible, the equation can be rewritten as

	

C 2(h h )

33.166 m/s

2 1 2= −

= −
=

[ ( )]2 2800 2250
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Applying the equation of continuity at the outlet to the nozzle gives

	
�m

A C
v
2 2

2
=

Rearranging to solve for ‘A2’:

	

A
m v

C
2

2

2
= ⋅�

	
A

14 kg/s 1.25 m /kg
33.166 m/s

2

3

= ×

	 A2 = 0.5276 m2  (Area of exit of convergent nozzle)

The respective diameter will be

	
d

4 . A
2

2=
π

	 d2 = 0.8196 m

9.3.7 P ump

A pump is a device that uses external work energy to produce a pressure rise in a flowing fluid.
Figure 9.8 portrays a pump defining its boundary with its input and output together with its 

losses. The steady FE equation gives

	

Q W m (h h )
C C

2
(gZ gZ )2 1 2 1− = − + −





+ −








� 2

2
1
2

•	 Although the velocities of the fluid will be high, the differences between the input and 
output velocities through the pump will not be large. The term representing the change in 
KE can be disregarded.

•	 PE will be generally small and can also be neglected.
•	 ‘W’ is the amount of work energy/second required to drive the pump.

System 
Q

Boundary

Outlet

Inlet

W

1

2

FIGURE 9.8  Pump.
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The steady state FE equation becomes

	 − = −W m(h h )2 1�
  	 (9.50)

as h2 > h1, ‘W’ will be found to be negative.

EXAMPLE 9.10

Fluid is being pumped at the rate of 45 kg/min. The specific enthalpy of the fluid at the inlet to the 
pump is 46 kJ/kg and at the outlet of the pump it is 175 kJ/kg. Assuming 105 kJ/kg of heat energy 
is lost to its surroundings by the pump, calculate the power required to drive the pump assuming 
the pump efficiency is 85%.

Solution

The fluid flow rate, ‘m’ 45 kg/min� =

	  = 0.75 kg/s

Heat loss ‘Q’ = −105 kJ/min

	  = −1.75 kJ/s

Specific enthalpy (h1) at inlet = 46 kJ/kg and specific enthalpy (h2) at exhaust = 1.27 kJ/kg.
The kinetic and potential energies are neglected. Substituting the above data into the steady 

FE equation

	 −1.75 – W = 0.75 × (175 – 46) kJ/s

Hence,

	 W = − 1.75 – (0.75 × 129)

	  = −98.5 kJ/s

	  = −98.5 kW (the negative sign indicating this is work energy required to drive the pump)

As the pump efficiency is 85%, power required to drive the pump

	  = 98.5/0.85

	  = 115.88 kW

9.3.8 T urbine

A turbine is opposite to that of a pump in that a pressure drop across the turbine results in work 
energy being produced (see Figure 9.9).

The steady FE equation gives

	

Q W m (h h )
C C

2
(gZ gZ )2 1 2 1− = − + −





+ −








� 2

2
1
2

•	 The average velocity flow of fluid through a turbine is normally high and passes quickly 
through the turbine. It can be assumed that heat energy does not have time to flow either 
into or out of the fluid, and hence Q = 0.

•	 The velocities through the turbine are high and the differences between the inlet velocity 
and outlet velocity are not large; therefore, the term representing the change in KE can be 
neglected.
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•	 PE is generally small and can be neglected.
•	 ‘W’ is the amount of external work energy produced per second.

The steady FE equation can therefore be reduced to

	 − = −W m(h h )2 1�
	 (9.50)

or

	 W m(h h )1 2= −�
	 (9.51)

EXAMPLE 9.11

In a turbine, fluid flows through it at the rate of 45 kg/min. The specific enthalpy drop of the fluid is 
580 kJ/kg. The turbine loses 2100 kJ/min in the form of heat energy. Calculate the power produced 
by the turbine assuming the changes in potential and KE are small and can be neglected.

Solution

From the question, Q = heat energy flow into the system = −2100 kJ/min, W = work energy flow 
from the system kJ/min, m = fluid flow rate = 45 kg/min, h2 – h1 = −580 kJ/kg, C1 and C2 = neglected 
and Z1 and Z2 = neglected.

The steady FE equation becomes

	 −2100 kJ/min – W = 45 kg/min × −580 kJ/kg

	 W = (26,100 – 2100) kJ/min

	 = 24,000 kJ/min

	 = 400 kJ/s

	 = 400 kW

9.3.9 T hrottling

A throttling process is where the fluid is made to flow through a restriction; for example, an orifice 
or a partially open throttling valve. This will cause a substantial pressure drop in the fluid within 
the vicinity of the restriction. Throttling is a non-reversible flow process.

System
Q

Boundary

Inlet

Outlet

W

2

1

FIGURE 9.9  Turbine.
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Figure 9.10 shows a pipe fitted with an orifice plate. One reason for fitting an orifice plate in a 
pipeline is to measure the pressure within a fluid passing through the pipe.

The general steady FE equation

	

Q W M (h h )
C C

2
(gZ gZ )2 1 2 1− = − + −





+ −








2

2
1
2

•	 PE can be considered to be small enough to be neglected.
•	 There are no working parts; no energy can be transferred in the form of work energy; 

therefore, W = 0.
•	 The throttling takes place over a very small distance and the available area through which 

heat energy can flow either into or from the fluid is very small, so it can be assumed that 
very little energy is lost by heat transfer; hence, Q = 0.

•	 Any difference that exists between C1 and C2 will be small, and as a result any change in 
the KE is normally not considered.

The steady FE equation becomes

	 0 m(h h )2 1= −�
	 (9.52)

that is, during a throttling process, the enthalpy will remain constant.

EXAMPLE 9.12

A fluid flowing through a pipeline undergoes a throttling process where the pressure is reduced 
from 10 bar to 1 bar when passing through an orifice plate. Prior to throttling, the specific volume 
of the fluid is 0.3 m3/kg, and after throttling it is 1.8 m3/kg. Calculate the change in specific internal 
energy during this throttling process.

Solution

For a throttling process, the steady state FE equation can be written as

	 0 m(h h )2 1= −�   or  h2 – h1

But h2 = u2 + P2v2 and h1 = u1 + P1v1.
The change in specific internal energy

	  = u2 – u1

	  = (h2 – P2v2) – (h1 – P1v1)

	  = (h2 – h1) – (P2v2 – P1v1)

	  = 0 – (1 × 1.8 – 10 × 0.3) bar m3/kg

	  = 120 × 10 Nm/kg

	  = 120 kJ/kg

1 2

�rottle

Flow in Flow out

FIGURE 9.10  Throttling process.
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9.3.10 E quation of Continuity

Consider any section of the cross-sectional area ‘A’, where the fluid velocity is ‘C’; then the rate of 
volume flow past the section is ‘CA’. Also, since the mass flow is volume flow divided by the specific 
volume

	
Mass flow rate, m

CA� = ν

where ν = specific volume at the particular section
With reference to Figure 9.11

	
�m

C . A C . A1 1 2 2= =ν ν1 2 	
(9.53)

9.3.11 N on-Flow Processes

In the previous section, the discussion centred on a fluid flowing through a system. In this section, 
the discussion will be where the fluid undergoes a series of processes where it does not flow. An 
example of this is the cylinder of an internal combustion engine. Referring to Figure 9.12 in the suc-
tion stroke, the working fluid is drawn into the cylinder where it is temporarily sealed. Whilst the 
cylinder is sealed, the fluid is compressed by the rising piston. Thermal energy is then introduced 
which produces sufficient energy forcing the piston back down the cylinder, thereby creating exter-
nal work. On completion of the working stroke, the exhaust valve is opened and the fluid is forced 
out of the cylinder back into its surroundings. The processes which are subject to action where 
the working fluid cannot cross the system boundary are called non-flow processes. This process 
occurred during the compression and working strokes in the previous example.

Referring to the general energy equation in Equation 9.41

	
gZ U P V

C
2

Q gZ U P V
C
2

W1 1 1 1
2 2

2 2+ + + + = + + + +1
2

2
2

If the fluid undergoes a non-flow process from state (1) to state (2), the terms from the general 
energy equation for p1V1 and p2V2 will be zero as the fluid is already in the system and will still be 
in the system at the end of the process. For similar reasons, the changes in kinetic and potential 
energies of the fluid will also be zero. The general energy equation will reduce to

	 U1 + Q = U2 + W	 (9.54)

or

	 U2 − U1 = Q − W	 (9.55)

1

2

Area: A1
Area: A2

C1 C2

System

FIGURE 9.11  Mass flow through a system.
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that is, in a non-flow process, the change in internal energy of the fluid is equal to the net amount 
of heat energy supplied to the fluid minus the net amount of work energy flowing from the fluid.

This equation is known as the non-flow energy equation and in the following discussion it will 
be shown how this is applied to the various non-flow processes.

9.3.12 C onstant Temperature (Isothermal) Process (pV – C)

In a process where the change in temperature is very small, that process can be approximated to an 
isothermal process. As an example, consider the slow expansion or compression of a working fluid 
in a cylinder that is perfectly cooled by water; this process may be analysed assuming the tempera-
ture remains constant.

Referring to Figure 9.13a and b which shows a constant temperature (isothermal) process, the 
general relationship of the properties between the initial and final states of a perfect gas will be as 
follows:

	

p V
T

p V
T

1 1

1

2 2

2

=
	

(9.56)

If the temperature remains constant throughout the process, that is, T1 = T2, then the above rela-
tionship becomes

	 p1V1 = p2V2	 (9.57)

Suction
stroke

Compression
stroke 

Working
stroke 

Exhaust
stroke 

FIGURE 9.12  Internal combustion engine cycle.

P

V
V1

V2

1

2

W

P1

P2

W(a) (b)

Q �ermal
insulation

FIGURE 9.13  (a) and (b): Constant temperature (isothermal) process.
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From this equation, it will be seen that an increase in the volume will result in a decrease in 
the pressure. In other words, in an isothermal process, the pressure is inversely proportional to its 
volume.

9.3.12.1  Work Transfer
Referring to the process represented on the p–V diagram in Figure 9.13, it is noted that the volume 
increases during the process, that is, the fluid is expanding and the expansion work is given by

	

W p dV
1

2

= ∫

	 

= =∫ c
V

dV ( )pV c, a constant
1

2

	

= ∫c
dV
V

1

2

	
= p V ln

V
V1 1

2

1

	
= =mRT ln

V
V

(p V mRT)1
2

1
1 1

	
= =





mRT ln
p
p

since
V
V

p
p1

1

2

2

1

1

2 	
(9.58)

On the p–V diagram shown in Figure 9.13b, the shaded area under the curve represents the amount 
of work being transferred from the system.

As this is an expansion process (that is an increasing volume), the work is being done by the 
system, that is, the system produces work output and this is shown by the direction of the arrow 
representing ‘W’.

9.3.12.2  Heat Transfer
Applying the heat balance to this case

	 U1 + Q = U2 + W (from Equation 9.54)

For a perfect gas:

	 U1 = mcvT1  and  U2 = mcvT2

As the temperature is constant:

	 U1 = U2

Substituting in the energy balance equation:

	 Q = W	 (9.59)
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Note that the heat flow is equivalent to the work done in an isothermal process for a perfect 
gas only. It should also be pointed out that on the p–V diagram when the process takes place 
from right to left, the work done by the fluid is negative. That is, work is being done on the fluid.

EXAMPLE 9.14

A process compresses 0.4 kg of oxygen isothermally from 1.01 bar to 5.5 bar at 22°C. Establish the 
work done during the compression and the heat transferred during the process. Assume that the 
oxygen is a perfect gas and the molecular weight of the oxygen is M = 32 kg/kmol.

Solution

From the question, m = 0.4 kg, p1 = 1.01 bar, T1 = 22°C, p2 = 5.5 bar and M = 32 kg/kmol.

	
From the equation R

R
M

o=

	
= 8314

32

	  = 0.260 kJ/kg K

For an isothermal process, work input

	
W mRT ln

p
p

(from Equation 9.58)1
2

1
=

	
= × × +0 4 0 260 22 273

5 5
1 01

. . ( )ln
.
.

	  = 52 kJ

As this is an isothermal process, all the work input is rejected as heat; hence, Q = W = 52 kJ.

9.3.13  Adiabatic Process (Q = 0)

An adiabatic process is one in which there is no heat transferred to or from the fluid during the 
process. Such a system is thermally isolated and the process within such a system may be idealised 
as an adiabatic process. Such a process can be either reversible or irreversible. Only the reversible 
process will be considered here.

Steam engine cylinders and gas turbine casings are generally well insulated to minimise any heat 
loss from the system. The fluid expansion process in such cases can be assumed to be adiabatic.

Figure 9.14a and b depicts an adiabatic process (zero heat transfer).
For a perfect gas, the equation for an adiabatic process is

	 pVγ = C	 (9.60)

where γ = ratio of specific heat = Cp/Cv.
Equation 9.60 applies to states 1 and 2 as

	 p V p V1 1 2
γ γ= 2 	 (9.61)
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Equation 9.61 can be rewritten as

	

p
p

V
V

2

1

1

2

= 





γ

	
(9.61a)

By manipulating Equations 9.56 and 9.61, the following relationship can be determined:

	

T
T

p
p

V
V

2

1

2

1

1

2

1
1

= 





= 





−
−γ

γ
γ

	

(9.62)

Examining Equations 9.61 and 9.62 for adiabatic processes on a perfect gas, the following con-
clusions can be made.

•	 Any increase in pressure will result in an increase in temperature.
•	 Any increase in volume will result in a decrease in pressure.
•	 Any increase in volume will result in a decrease in temperature.

9.3.13.1  Work Transfer
A reversible adiabatic process for a perfect gas is shown on the p–V diagram in Figure 9.14b and it 
is noted that the volume increases during the process. The work done is given by the shaded area 
and this area can be evaluated by integration—that is

	

W p dV
1

2

= ∫
	

(9.63)

Since pVγ = c, a constant, then

	

= ∫ c
V

dV
1

2

γ

	

= ∫c
dV
V

1

2

γ

P1

P2

(a) (b)W

Qloss

P

V
V1 V2

1

2

W

pVn = C 

FIGURE 9.14  (a) and (b): Polytropic process.



229Thermodynamic Basics

	
W

p V p V1 1 2 2= −
−γ 1 	

(9.64)

Note that after expansion, p2 is smaller than p1.
As this is an expansion process, the work is done by the system, that is, the system produces work 

output and this is shown by the direction of the arrow representing ‘W’.

9.3.13.2  Heat Transfer
As stated in an adiabatic process, Q = 0.

Applying an energy balance to this case (Figure 9.13b):

	 U1 − W = U2

	 W = U1 − U2	 (9.65)

In an adiabatic expansion, the work output will be equal to the decrease in internal energy, that 
is, because of the work output, the internal energy of the system will decrease by a corresponding 
amount.

Hence, for a perfect gas:

	 U1 = mcvT1

	 U2 = mcvT2

Substituting into Equation 9.65:

	 W = mcv(T1 − T2)	 (9.66)

Now

	 cp – cv = R

or

	
c

R
v = −γ 1 	

(9.67)

Substituting in Equation 9.66

	
W

mR(T T )
1

1 2= −
−γ 	

(9.68)

But mRT1 = p1V1 and mRT2 = p2V2.
Substituting in Equation 9.68, the expression for the expansion becomes

	
W

p V p V
1

1 1 2 2= −
−γ 	

(9.69)
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EXAMPLE 9.15

A thermally insulated reciprocating compressor compresses air at 0.98 bar and 20°C to one-sixth 
of its original volume. Calculate the final pressure and volume of the air after compression.

If the mass of air within the cylinder is 0.05 kg, determine the required work input. For air, take 
γ = 1.4 and cv = 0.718 kJ/kg K.

Solution

From the question, p1 = 0.98 bar, T1 = 20 + 273 = 293 K, V2/V1 = 1/6, m = 0.05 kg and cv = 0.718 kJ/kg.
As the cylinder is thermally insulated, it is considered that heat transfer is negligible and that 

the process is treated as adiabatic and considers the air as a perfect gas.
From Equation 9.61:

	

p
p

V
V

2

1

1

2
= 





γ

Now

	 p2 = 0.98 x 61.4

	  = 12.04 bar

From Equation 9.62:

	

T
T

V
V

2

1

1

2
= 





−γ 1

	 T2 = 293 × 60.4

	  = 599.97 K  say 600 K

	  = 327°C

Rewriting Equation 9.66:

	 W = mcv(T1 − T2)

	 W = 0.05 × 0.718 (600 – 293)

	  = 11.02 kJ

9.3.14 P olytropic Process (pVn = C)

In practice, it is found that many processes approximate to a reversible law in the form

	 pVn = constant	 (9.70)

where n is a constant. Vapours and perfect gases obey this type of law closely in many non-flow 
processes. Such processes are internally reversible.

If a piston in a cylinder is cooled perfectly and a compression or expansion is carried out slowly, 
the process will be isothermal where n = 1.

If a compression is carried out rapidly and again the piston and cylinder are perfectly insulated, 
the process will be adiabatic and in this case the constant n = γ.
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When a compression or expansion is carried out at a moderate speed and the piston and cylinder 
assembly are cooled to some degree, the process will be somewhere between the two conditions 
described above. This will be the general situation in many engineering applications where the 
index ‘n’ will take some value that is between 1 and γ dependent upon the degree of cooling.

Some examples include

	 Compression in a water-cooled air compressor: n = 1.1
	 Compression in a fan-cooled air compressor: n = 1.2
	 Compression in an air-cooled air compressor: n = 1.3

Figure 9.14a and b depicts the polytropic process.
Equation 9.70 applies to the states 1 and 2 as

	 p V p V1 1
n

2 2
n= 	 (9.71)

or

	

p
p

V
V

2

1

1

2

n

= 



 	

(9.72)

For a perfect gas, the general property relationship between the two states:

	

p V
T

p V
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1 1

1
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=
	

(9.73)

Manipulation of Equations 9.71 and 9.72 results in the following relationship:

	

T
T

p
p

V
V

2

1

2

1

n 1
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n 1
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− −

	

(9.74)

When examining Equations 9.72 and 9.74, the following conclusions can be made:

•	 Any increase in volume will result in a decrease in pressure.
•	 Any increase in volume will result in a decrease in temperature.
•	 Any increase in pressure will result in an increase in temperature.

9.3.14.1  Work Transfer
Referring to Figure 9.14b, there is an increase in volume during the process and as the fluid expands, 
the expansion work is given by

	
W p dV

1

2

= ∫
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= =∫ c
V

dV ( )pV c, a constant
n

1
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Vn

1

2

	

(9.75)

	
W

p V p V
n 1

1 1 2 2= −
− 	

(9.76)

Note that after expansion, p2 is smaller than p1.
Following the expansion process, the work is done by the system and this is shown by the direc-

tion of the arrow that represents work ‘W’ as shown in Figure 9.14b.

9.3.14.2  Heat Transfer
The energy balance is applied to this case as

	 U1 − Qloss − W = U2

	 Qloss = (U1 − U2) − W	 (9.77)

or

	 W = (U1 − U2) − Qloss	 (9.78)

In a polytropic expansion, the work output is reduced due to the heat losses.
Examining Equation 9.78 and Figure 9.14b, it will be noted that during the polytropic process, as 

the volume increases there is a corresponding reduction in pressure. For a perfect gas, Equation 9.74 
also shows that a decrease in pressure will also result in a drop in the system temperature.

EXAMPLE 9.16

Following compression, the combustion gases in a petrol engine are at 35 bar and 900°C. The 
gases then expand through a volume ratio (V2/V1) of 8.5/1 and occupy 0.51 × 10−3 m3 after expan-
sion. The polytropic expansion index n = 1.15 when the engine is air cooled. Calculate the tem-
perature and pressure of the gas after expansion and establish what the work output will be?

Solution

From the question, p1 = 30 bar, t1 = 900°C (T1 = 900 + 273 = 1173 K), V2 = 0.51 × 10−3 m3, n = 1.15 
and V2/V1 = 8.5.

Treating the air as a perfect gas, for a polytropic process the property relationship is given by 
Equation 9.74
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= × 





−

1173
1

8.5

1.15 1

	  = 850.9 K

	  = 577.9°C

From Equation 9.72:

	
p p
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= × 





35
1

8.5

1.15

	  = 2.99 bar

and

	

V
V

8.52

1
=

Then

	
V

0.510 10
8.5

1

3

= × −

	  = 60 × 10−6 m3

Equation 9.76 gives the work output during the polytropic expansion:

	
W

p V p V
n 1

1 1 2 2= −
−

	
= × × − × ×

−

− −( )( ) ( . )( . )
.

35 10 60 10 2 99 10 0 510 10
1 15 1

5 6 5 3

	  = 529.6 J

	  = 0.530 kJ (Ans)

9.3.15 C onstant Volume Process

In certain chemical processes, fluids are held in fixed volume rigid-walled vessels whilst the fluid or 
gas is either heated or cooled as shown in Figure 9.15a and b. In this case, the process is considered 
a constant volume process as the vessel has a fixed volume.

The general property relation between the initial and final states of a perfect gas is applied as
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2

=

As the volume remains constant during the process, V2 = V1 and the above equation then reduces to

	

p
T

p
T

1

1

2

2

=
	

(9.79)
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or

	

T
T

p
P

2

1

2

1

=
	

(9.80)

From this equation, it is clearly seen that an increase in temperature will result in a correspond-
ing increase in pressure. Hence, the temperature is proportional to the pressure.

9.3.15.1  Work Transfer
Work transfer (p dV) will be zero as the change in volume (dV) during the process will also be zero. 
Some process vessels (reactors) usually have a stirrer or paddlewheel installed to assist in mixing 
the fluid, in which case some work will be transferred.

9.3.15.2  Heat Transfer
Applying the non-flow energy equation from Equation 9.55

	 Q − W = U2 − U1

This will give

	 Q − 0 = U2 − U1

that is,

	 Q = U2 − U1	 (9.81)

Note: This result is important and shows that the net amount of heat energy supplied to or taken 
from the fluid during a constant volume process is equal to the change in the internal energy of the 
fluid.

EXAMPLE 9.17

During a constant volume process, the specific internal energy of a fluid is increased from 
120 kJ/ kg to 180 kJ/kg. Calculate the amount of heat energy supplied to 2 kg of fluid to increase 
the internal energy.

Solution

From the non-flow energy equation:

	 Q – W = U2 – U1

Q 

P2

P1

V1 = V2 V1 = V2

2

1

P(a) (b)

V 

P2

P1

1

2

P

V 

Q 

FIGURE 9.15  Constant volume process (V1 = V2). (a) Heating and (b) cooling.



235Thermodynamic Basics

For a constant volume process:

	 W = 0

Therefore, the equation becomes

	 Q = U2 – U1

	  = (180 – 120) kJ/kg

	  = 60 kJ/kg

For a mass of 2 kg of fluid:

	 Q = 60 × 2

	  = 120 kJ/kg

that is, 120 kJ/kg of heat energy will be required.

9.3.16 C onstant Pressure Process

Intensifiers are used in hydraulic and gas supply systems to maintain a constant pressure within the 
system, even though the flow may be varying due to usage. These consist of having a cylinder fit-
ted with a piston that has a constant load applied to it as depicted in Figure 9.16a and b. This is an 
example of a constant pressure process.

The general property relation between the initial and final states of a perfect gas is applied as

	

p V
T

p V
T

1 1

1

2 2

2

=

When the pressure remains constant during the process, p2 = p1, the above relation then 
becomes
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1 2
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FIGURE 9.16  (a) and (b): Constant pressure process.



236 Design Engineer’s Reference Guide

or
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(9.82)

It is obvious from this equation that any increase in volume will result in a corresponding increase 
in temperature in the fluid. Therefore, the temperature is proportional to the volume.

9.3.16.1  Work Transfer
Referring to the p–V diagram in Figure 9.16b, it will be noted that the increase in volume expands 
during the process. This expansion work is given by (similar to Equation 9.63)

	

W p dV
1

2

= ∫

	

= ∫p dV ( )p is constant
1

2

	  = p(V2 − V1)	 (9.83)

On a p–V diagram, the area under the process line represents the amount of work transfer. From 
Figure 9.16b

	 W = Area of the shaded rectangle

	 = Height × width

	 = p(V2 – V1)  (It will be noted that this expression is identical to Equation 9.83.)

9.3.16.2  Heat Transfer
Again applying the non-flow energy equation

	 Q – W = U2 – U1

or

	 Q = (U2 – U1) + W	 (9.84)

Part of the heat supplied is converted into work energy and the remainder is utilised in increasing 
the internal energy of the system.

Now, substituting for ‘W’ in Equation 9.84:

	 Q = (U2 – U1) + p(V2 – V1)

	 = U2 – U1 + p2V2 – p1V1  (since p2 = p1)

	 = (U2 + p2V2) – (U1 + p1V1)

Now

	 H = U + pV
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Hence,

	 Q = H2 – H1	 (9.85)

Referring to Figure 9.16b, it will be noted that heating will increase the volume, that is, the fluid 
will expand. For a perfect gas, the equation suggests that an increase in volume will result in a cor-
responding increase in temperature.

EXAMPLE 9.18

A cylinder contains a fluid with a volume of 0.1 m3 at a constant pressure of 7 bar and having a 
specific enthalpy of 210 kJ/kg. The volume expands to 0.2 m3 following the application of heat 
energy to the fluid and the specific enthalpy increases to 280 kJ/kg.

Determine:

	 1.	The quantity of heat energy supplied to the fluid.
	 2.	The change in the internal energy of the fluid.

Solution

From the question, p = 7.0 bar, V1 = 0.1 m3 and V2 = 0.2 m3.

	 1.	Heat energy supplied = change in enthalpy of the fluid:

	

Q H H

m(h h )

2.25(280 210)

157.5 kJ

2 1

2 1

= −
= −
= −
=

	 2.	For a constant pressure process:

	

W P(V V )

7 10 (0.2 0.1)

7 10 J

70 kJ

2 1

5

4

= −

= × × −

= ×
=

		  Applying the non-flow energy equation

	 Q – W = U2 – U1

		  gives

	 U2 – U1 = 157.5 – 70
	 = 87.5 kJ





239

Fluid Mechanics

10.1  FLUID PROPERTIES

The term fluid covers both liquids and gasses. It should be noted that there is a degree of common-
ality in Chapter 9, where a number of terms used are also used in fluid mechanics. Table 10.1 lists 
some of these terms used together with their units.

A liquid is hard to compress and takes the shape of the container it is in. It has a fixed volume and 
an upper-level surface. However, although liquids are generally considered to be incompressible, 
they are compressible only when they are highly pressurised.

Gasses are very easy to compress and expand to fill their container and unlike liquids, they do 
not have a free surface.

The important characteristics of fluids from the point of view of fluid mechanics include density, 
pressure, viscosity and compressibility.

10.1.1 D ensity

There are three forms of density and a distinction must be carefully made between them.

	 1.	Mass density (ρ). This is the mass per unit volume with the unit of kilogram per cubic 
meter. The density of gas changes according to its pressure, but that of a liquid may be 
considered constant unless the relevant pressures are very high.

	 2.	Specific weight (g ). In fluid mechanics, specific weight represents the force exerted by 
gravity on a unit volume of a fluid. For this reason, the unit is expressed as force per unit 
volume (N/m3). Specific weight can be used as a characteristic property of a fluid.

	 3.	Specific gravity (sg) or relative density (RD). This is a dimensionless quantity being the 
ratio of the density (mass of a unit volume) of a substance to the density of a given refer-
ence material. Sg usually means relative density with respect to water. The term ‘relative 
density’ is often preferred in modern scientific usage.

The sg for liquids and solids is generally identified as the ratio of the material density relative 
to water under the same conditions, say 4°C and 1.013 bar (ambient pressure). For gasses, the sg is 
the ratio of the gas density to the density of air, both under the same conditions as identified above.

For a liquid:

	
RD

w

= ρ
ρ 	

(10.1)

For a gas:

	
D

a

= ρ
ρ 	

(10.2)

10
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The density of gasses and vapours is greatly affected by pressure. For ‘perfect gasses’, the density 
can be calculated from the formula:

	
ρ = P

RT 	
(10.3)

	
R

R
M

o=
	

(10.4)

‘Ro’ is the universal gas constant = 8314 J/kg K and ‘M’ is the molecular weight of the material. 
Hence,

	
R

M
J

kg K
= 8314

	
(10.5)

The reciprocal of density, that is, the volume per unit mass is called the specific volume (υ)

	
υ ρ= 1

	
(10.6)

The dimensionless unit for density is ML−3 and the corresponding unit for specific volume is 
M−1L3 (see Section 10.5).

10.1.2 P ressure

On planet Earth, a fluid is always subject to pressure and is the force per unit area at a point. The 
absence of pressure can only occur in a complete vacuum. A complete vacuum is really a theoretical 
concept as even in deep space, there is a partial pressure.

TABLE 10.1
Symbols Used in Fluid Mechanics

Symbol Description Units Symbol Description Units

a Acceleration m/s2 R Gas constant J/(kg ⋅ K)

A Area m2 Ro Universal gas constant J/(kg ⋅ mol ⋅ K)

F Force N ρ Fluid density kg ⋅ m3

g Acceleration due to gravity m/s2 ρ Density kg/m3

h Fluid head m ρr Density kg/m3

K Bulk modulus MPa s Specific volume m3/kg

m Mass kg u Fluid velocity m/s

M Molecular weight v Fluid velocity m/s

p Fluid pressure N/m2 x Depth of centroid m

Pabs Absolute pressure N/m2 β Compressibility 1/MPa

Pgauge Gauge pressure N/m2 θ Slope Radians

Patm Atmospheric pressure N/m2 τ Shear stress N/m2

Ps Surface pressure N/m2 μ Viscosity Pa ⋅ s
Q Volumetric flow m3/s v Kinematic viscosity m2/s

q Heat transfer/unit mass J/kg υ Specific volume m3/kg

γ ratio of specific heats
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The normal pressure occurring on the surface of the Earth is called the ‘atmospheric pressure’. 
Pressure is measured in two ways:

•	 Absolute pressure, where the pressure is measured relative to that of a perfect vacuum.
•	 Gauge pressure, where the pressure is measured relative to the local atmospheric pressure. 

These measured pressures are referred to as gauge pressures.

Figure 10.1 shows the relationship between the gauge and the atmospheric pressure. The figure 
shows two measurements:

	 1.	A pressure less than atmospheric pressure
	 2.	A pressure greater than atmospheric pressure

The SI unit for pressure is Pascal (Pa) with the unit of N/m2.

10.1.3 S tatic Pressure and Head

When considering fluid pressure, it has been found more convenient in hydrostatics and fluid 
dynamics to use a pressure head as a means of measuring pressures. Considering Figure 10.2, a 
volume of fluid in an open container is subject to atmospheric pressure acting on the surface of the 
fluid. Consider a vertical tube that is connected to the bottom of the container and terminates at a 
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FIGURE 10.1  Atmospheric scale.
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x x
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FIGURE 10.2  Atmospheric pressure.
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distance above the surface of the fluid into a vessel held at a pressure of absolute vacuum. It will be 
found that the fluid will be forced up the tube to a point where gravity acting on the fluid in the tube 
balances the force due to the pressure at the bottom of the head of the fluid. Assuming that the area 
of the tube is At and the density of the fluid is ρ, the pressure at the top of the tube is zero. The force 
of the fluid acting on the section ‘x:x’ as shown in the figure will be

	 F hA gxx = +0 ρ 	 (10.7)

The pressure at ‘x:x’ is equal to

	
P

hA g
h gxx = +0 ρ
ρ

For a fluid having a known fixed density, the height ‘h’ can be conveniently used to identify the 
pressure. For water, the atmospheric pressure is approximately 10.5 m. In practice, water will vapo-
rise into the vacuum at the top of the tube, thereby reducing the column height by approximately 
180 mm.

Therefore, mercury is used for measuring pressure. With an atmospheric pressure of 1 bar, this 
will support a column height of 750.06 mm of mercury.

Mercury is used as it has a low-vapour pressure and the vacuum will only be reduced by approxi-
mately 0.16 Pa. This is very small compared to an atmospheric pressure of 105 Pa (1 bar).

From this description, it is clear that gauge and vacuum pressures can be easily determined using 
this simple method. As a point of interest, barometers measure the local atmospheric pressure read-
ings in millimeters of mercury (Hg).

10.1.4 V iscosity

A fluid at rest cannot resist any shearing forces, but once the fluid is in motion, shearing forces are 
then set up between layers of the fluid with them moving at different velocities. The viscosity of a 
fluid is a measure of the ability of the fluid to resist these shearing forces.

Perfect fluids cannot, in theory, transmit shear stresses. All real fluids will resist shear flow to 
some degree or another. The viscosity of the fluid defines the degree of resistance to flow it pos-
sesses. Consider Figure 10.3a that shows a concentric tube located on a shaft and separated from 
the shaft by a fluid. As the shaft rotates, there will be a tendency for the tube to rotate at an angular 
velocity (ω).

The velocity distribution is shown in Figure 10.3b. The torque required to rotate the tube is an 
indication of the viscosity of the fluid.

Ri

Ro

Ro – Ri 

u

(a) (b)

ω

FIGURE 10.3  (a) and (b): Viscosity of a fluid.



243Fluid Mechanics

10.1.4.1  Coefficient of Dynamic Viscosity
The coefficient of dynamic viscosity (η) is defined as the shear force per unit area that is required 
to drag one layer of a fluid with a unit velocity past another layer a unit distance away from it in the 
fluid. The SI unit of measurement for dynamic viscosity is

	
Coefficient of dynamic viscosity

N s
m

or
kg

m s
or Pa s

2
= ⋅

⋅ ⋅

The old unit for dynamic viscosity (η) was dyn ⋅ s/cm2 and this was called a ‘poise’ (after 
Poiseuille) and the SI unit is related to the Poise:

	
10 1

2
Poise

Ns
m

this is not considered an acceptable multiple= ( )

Since

	
1 centipoise ( cP is an accepted SI unitcP)

N s
m

1 0 001
2

= ⋅
.

10.1.4.2  Kinematic Viscosity
Kinematic viscosity (v) is the ratio of the dynamic viscosity to the mass density:

	
v = η

ρ 	
(10.8)

The base unit is m2/s. The previous metric unit was cm2/s and this was called the ‘Stoke’ after a 
British scientist. The SI unit is related to the Stoke.

	
1 0 0001

2

Stoke St) this is not considered acceptable as an SI un
m
s

( . (= iit)

Since

	
1 0 000001

2

CentiStoke cSt) and this is an acceptable multiple
m
s

( .=

	
1 0 00000 1

2 2

cSt
m
s

mm
s

= =.

10.1.4.3  Other Units
Other units of viscosity will be encountered by the way they were originally derived. As an example, 
Redwood seconds came from the name of the Redwood viscometer. Other units include Engler’s 
degrees, Society of Automotive Engineers (SAE) numbers and so on. Conversion charts are avail-
able to enable conversions into useable engineering or SI units.

10.1.5 C ompressibility

For liquids, the relationship between the change in pressure and the change in volume is given by 
the bulk modulus ‘K’

	
Bulk modulus

Change in pressure intensity
Volumetric strain

=
	

(10.9)
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=  

Change in pressure intensity
Change in volume/original volume( )	

(10.10)

The relationship between pressure and volume for a gas can be derived from the gas laws.

For all perfect gases:

	 pV RT= 	 (10.11)

where
p represents absolute pressure
V represents specific volume = 1/w
T represents absolute temperature
R represents gas constant

If any change occurs isothermally (at constant temperature):

	 pV = constant	  (10.12)

If any change occurs adiabatically (no heat gain or loss):

	 pVγ = constant	 (10.13)

where γ represents the ratio of the specific heat at constant pressure to the specific heat at constant 
volume.

10.2  FLUID FLOW

When a fluid is at rest, there is no shear force developed but when the fluid is in motion, shear forces 
set up due to viscosity and turbulence, opposing the motion and producing frictional effects.

This section will study the patterns of flow, both inside a conduit and outside it.

10.2.1 P atterns of Flow

A fluid may be considered as consisting of a large number of individual particles moving in the 
general direction of flow but usually, are not parallel with each other. The velocity of any particle is 
a vector quantity having a magnitude and direction that varies from moment to moment. The path 
followed by a particle is called a ‘streamline’ or ‘path line’.

When considering the flow of a large body of fluid, it is sometimes convenient to consider a small 
section. If streamlines are drawn through every point on the circumference of a small area, a ‘stream 
tube’ is formed (see Figure 10.4). Fluid particles can only flow along a streamline and particles cannot 
flow across the streamline; the fluid inside a stream tube can only enter or leave at its ends.

10.2.2 T ypes of Flow

There are two types of flow.

10.2.2.1  Internal Flow
Internal flow is within the boundary walls and these include all types of flow within pipes, channels, 
airflow within ducts and so on.

10.2.2.2  External Flow
External flow covers the flow that is outside a boundary, body or conduit. Examples of these types 
of flow include immersed bodies, airflow around buildings and flow over aircraft wings and suspen-
sion bridges and around automobile vehicles.

Two distinct types of flow can occur; these are as follows.
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10.2.2.3  Laminar Flow
This type of flow is also known as viscous flow or streamline in which the particles move in an 
orderly manner and retain the same relative positions in successive cross sections.

10.2.2.4  Turbulent Flow
In this type of flow, it may be visualised that the particles of fluid move in a disorderly manner if 
they occupy different relative positions in successive cross sections.

10.2.3 L aminar Flow

Following a study of laminar flow, Osborne Reynolds concluded that this type of flow can be defined 
by the velocity, density and viscosity of the fluid together with the dimensional size of the conduit 
and depends on the value of

	

ρ
η
vd

	
(10.14)

This relationship is known as ‘Reynolds number’, in which

ρ represents the mass density of the fluid
v represents velocity
d represents a typical dimension for the size of the pipe
η represents the viscosity of the fluid

When the Reynolds number is <2100 approximately, the flow will always be viscous. If the rel-
evant Reynolds number is >4000, the flow will be turbulent. When the flow in the transition region 
is termed ‘critical’, it may be either laminar or turbulent or a mixture of both.

EXAMPLE 10.1

A fluid with a density of 860 kg/m3 has a kinematic viscosity of 40 cSt. Determine the critical 
velocity when it is flowing through a pipe having a bore of 50 mm.

FIGURE 10.4  Stream tube.
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Solution

	

R

R

.
.

e

e

=

=

= × ×

=

−

u d
v

u
v

d

m/s

m

m

2100 40 10
0 05

1 68

6

10.2.4 D erivation of Poiseuille’s Equation for Laminar Flow

The original derivation for laminar flow was undertaken by Poiseuille and relates pressure loss in a 
pipe to the velocity and viscosity. The equation is the basis for the measurement of viscosity; hence, 
his name has been used for the measurement of viscosity.

Consider a pipe having a laminar flow in it. A stream tube of length DL, a radius ‘r’ and thickness 
dr is shown in Figure 10.5.

Let ‘y’ be the distance from the pipe wall:

	 y = R – r	 (10.15)

	
dy dr

du
dy

du
dr

= − = −
	

(10.16)

The shear stress on the outside of the stream tube is ‘τ’. The force (Fs) acting from right to left is 
due to the shear stress and is obtained by multiplying ‘τ’ by the surface area.

Hence,

	 F r Ls = ×τ π2 ∆ 	 (10.17)

For a Newtonian fluid:

	
τ µ µ= = −du

dy
du
dr 	

(10.18)

Substituting for ‘τ’, the following equation is obtained:

	
F r L

du
drs = −2π µ∆

	
(10.19)

ΔL 

r

dr

R 

p + Δp p

FIGURE 10.5  Derivation for laminar flow.
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The pressure difference between the left end and the right end of the section is Dp. The force due 
to Fp is Dp × circular area of radius ‘r’.

	 Fp = Dp × pr2

Equating forces:

	

− =

=

2

2

2π µ π

µ

r L
du
dr

p r

du
p
L

rdr

∆ ∆

∆
∆ 	

(10.20)

Integrate Equation 10.20 to obtain the velocity of the streamline at any radius ‘r’ between the 
limits u = 0 when r = R and u = u when r = r.

	

du
p
L

rdr

u
p
L

r R

u
p
L

r R

R

ru

= −

= − −

= −

∫∫ ∆
∆

∆
∆

∆

2
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4
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2 2

2 2

µ

µ

µ

( )
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(10.21)

It is recognised that this is the equation for a parabola; so, when the equation is plotted to show 
the boundary layer, it extends from zero to a maximum value at the centre (Figure 10.6).

For the maximum velocity, substitute r = 0:

	
u

pR
L1

2

4
= ∆

∆µ 	
(10.22)

The average height of a parabola is the maximum value/2; so, the average velocity

	
u

pR
Lm = ∆

∆

2

8µ 	
(10.23)

u1

um

R 

FIGURE 10.6  Laminar flow in a pipe.
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It may be required to calculate the pressure drop in terms of diameter ‘d’. Therefore, substitute 
R = d/2 and rearrange the equation:

	
∆ ∆

p
L

d
m= 32

2

µ µ

	
(10.24)

The volumetric flow rate is

	 Average velocity × cross-sectional area

Hence,

	

Q
R pR

L

R p
L

d p
L

=

=

=

π
µ

π
µ

π
µ

2 2

4

4

8

8

128

∆
∆
∆

∆
∆
∆ 	

(10.25)

This equation can be rearranged for the pressure head; the friction head for a length ‘L’ is derived 
from

	
h

p
gf = ∆

ρ 	
(10.26)

Hence,

	
h

L
gdf

m= 32
2

µ µ
ρ 	

(10.27)

This is Poiseuille’s equation and applies only to laminar flow.

EXAMPLE 10.2

A capillary tube is 30 mm long and has a 1.0 mm bore. To obtain a flow rate of 8 mm3/s requires 
a head of 30 mm. The density of the fluid is 800 kg/m3.

Calculate the dynamic and kinematic viscosity of the fluid.

Solution

Rearranging Poiseuille’s equation:

	
µ ρ= hf gd

Lum

2

32

Now

	

A
d

0.7854 mm

2

2

=

= ×

=

π

π
4

1 0
4

2.
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u
Q
A

10.18 mm/s

m =

=

=

8
0 7854.

Substituting values:

	

µ = × × ×
× ×

= ⋅
=

0 03 800 9 81 0 001
32 0 03 0 01018

2. . .
. .

0.02409 N s/m or

241cP

	

v

30.114 10 m /s or

30.11cSt

6 2

=

=

= ×
=

−

µ
ρ
0 02409

800
.

EXAMPLE 10.3

A fluid is flowing through a pipe of 150 mm bore having a Reynolds number of 250. The dynamic 
viscosity is 0.018 N ⋅ s/m2 and the density is 900 kg/m3.

Calculate the pressure drop per metre length together with the velocity and radius at which it 
occurs.

Solution

	
Re = ρµ

µ
md

	
µ µ

ρm
d

= ⋅Re

	

µm

0.0333 m/s

= ×
×

=

( . )
( . )
250 0 018
900 0 15

	

∆p
L

d
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m=
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=
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0 15

2

2

µ µ

. . .
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p
L

R r2=





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The above equation is rearranged to solve for ‘r’:

	

r R
L u

p

0.0692 m

r 69.2 mm

= −

=
=

2 4 µ
∆

10.2.5 T urbulent Flow

In the previous section, it was shown that Poiseuille’s equation applies only to laminar flow. At 
some critical velocity, the flow will begin to become turbulent forming eddies and showing other 
chaotic behaviour that do not contribute to the volumetric flow rate. This turbulence increases the 
resistance dramatically so that large increases in pressure will be required to further increase the 
volume flow rate.

In a circular pipe, turbulence is generated by the friction existing on the internal surface of the 
pipe. If the internal surface was completely smooth without any surface roughness, then the flow 
would remain laminar at higher Reynolds numbers into the critical zone. Where there is any surface 
roughness, this will initiate turbulence at lower Reynolds numbers. Consider Figure 10.7 that shows 
the internal surface roughness of a pipe. Relative roughness is expressed as D/ε.

That is, less rough pipes will have a high D/ε whereas more rough pipes will have lower D/ε.
Table 10.2 gives some comparative roughness values for materials commonly used in fluid 

transport.
To begin the discussion of turbulent flow in circular pipes, it is necessary to define the friction 

coefficient. It is defined as follows:

	

C
wall shear stress

dynamic pressure

D p
L

f

m

=

= 2
4 2

∆
ρµ 	

(10.28)

Rearranging Equation 10.28 to equate to Dp:

	
∆p

C L
D

f m= 4
2

2ρµ
	

(10.29)

D

r

ε

FIGURE 10.7  Surface roughness in a pipe.
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This expression is frequently used to state the friction head hf.

	
h

p
g

C Lu
gDf
f m= =∆

ρ
4

2

2

	
(10.30)

This expression is known as the ‘Darcy formula’ and in the case of laminar flow, Darcy’s formula 
must give the same result as Poiseuille’s equation.

Hence, equating the two expressions:

	

4
2

322

2

C Lu
gD

Lu
gD

f m m= µ
ρ 	

(10.31)

Hence

	
C

u Df
m n

= =16 16µ
ρ R 	

(10.32)

This gives the same result as for laminar flow.
In pipes where the Reynolds number exceeds 3000, it can be safely assumed that turbulent flow 

will exist.

10.2.6  Fluid Resistance

An alternative approach to solving problems that involve losses is to use fluid resistance. The above 
equations can be expressed in terms of the flow rate ‘Q’ by substituting u = Q/A.

From Equation 10.30:

	
h

C Lu
gDf
f m= 4

2

2

	
(10.33)

	
= 4

2

2

2

C LQ
gDA

f

	
(10.34)

Substituting A = πD2/4, the following equation is derived:

	

h
C LQ

g D

RQ

f
f=

=

32 2

2 5

2

π

	 (10.35)

TABLE 10.2
Comparative Roughness Values for a Range of Materials

Material Surface Roughness ε (m)

Plastic 3.0 × 10−7

Steel plain 4.6 × 10−5

Steel galvanised 1.5 × 10−4

Concrete 1.2 × 10−4
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where R is the fluid resistance; hence

	
R

C L
g D

f= 32
2 5π 	

(10.36)

Note: This equation contains the friction coefficient (Cf) and this will vary with changes in velocity 
and surface roughness; therefore, ‘R’ should be used with caution.

10.2.7 M oody’s Diagram

An American engineer L. F. Moody (1944) conducted a series of experiments that resulted in a 
chart known as the Moody chart (see Figure 10.8). This shows a graph in non-dimensional form that 
relates friction factor, Reynolds number and the relative roughness in circular pipes.

The diagram shows that the friction coefficient decreases with the Reynolds number but at a cer-
tain point, it becomes constant. When this point is reached, the flow is said to be a fully developed 
turbulent. This point occurs at lower Reynolds numbers for rougher pipes.

A formula that gives an estimated value for any surface roughness was proposed by Professor 
Haaland of the Norwegian Institute of Technologies in 1984.
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(10.37)
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FIGURE 10.8  The Moody diagram.
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EXAMPLE 10.4

A circular pipe with a 100-mm-diameter bore, having a mean surface roughness of 0.06 mm, has 
a fluid flowing through it with a Reynolds number of 20,000.

Calculate the friction coefficient.

Solution

The mean surface roughness:

	

ε =

=

=

k/d

0 06
100
0 006

.

.

From the Moody diagram (Figure 10.8), locate the line for ε = k/d.
Trace this line till it meets the vertical line at Rn = 20,000. Read off the value for Cf on the left-

hand axis.
The answer will be Cf = 0.0067.
This answer can be checked using the Haaland formula:
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EXAMPLE 10.5

A fluid flows through a pipe with a bore of 100 mm diameter and has a mean velocity of 6.0 m/s. 
The mean surface roughness is 0.03 mm and the length of the pipe is 100 m.

If the dynamic viscosity is 0.005 N ⋅ s/m2 and the density of the fluid is 900 kg/m3, calculate 
the pressure loss.

From the question:

ρ = 900 kg/m3

u = 6.0 m/s
d = 0.10 m
η = 0.005 N ⋅ s/m2

k = 30 × 10−6 m
L = 100 m

	

R
ud

108,000
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= × ×

=

ρ
η

900 6 0 0 1
0 005

. .
.
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Using Haaland’s formula and checking with Moody’s chart:
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	 Dp = ρ ⋅ g ⋅ hf

	 = 900 × 9.81 × 34.821

Pressure drop due to the length of the pipe:

	 = 307.326 kPa (Ans)

10.3  CONTINUITY EQUATION

The continuity equation is a mathematical version of the principle of the conservation of mass as 
applied to fluid flow. There are two laws that apply:

•	 The law of conservation of mass (continuity equation)
•	 The law of conservation of energy (Bernoulli’s equation)

10.3.1 C onservation of Mass

Consider a fluid flowing at a constant rate in a pipe or conduit; the mass flow rate must be the same 
in all sections along the length. Figure 10.9 shows the length of piping connected to a pump filling 
a storage tank.

The mass flow rate in any section will be

	 m Aum= ρ 	 (10.38)

where
ρ represents fluid density (kg/m3)
A represents cross-sectional area (m2)
um represents mean fluid velocity (m/s)
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For the system shown in Figure 10.9, the mass fluid flow rate must be the same in sections (1), 
(2), and (3); hence

	 ρ ρ ρ1 1 1 2 2 2 3 3 3A u A u A u= = 	 (10.39)

When the liquid is a fluid, the density will be equal in all sections; therefore, it cancels out, so:

	 A u A u A u constant1 1 2 2 3 3= = = 	 (10.40)

10.3.2 C onservation of Energy

Forms of energy.

10.3.2.1  Flow Energy
This is the energy a fluid possesses due to its pressure.

	 Flow energy (FE) = p ⋅ Q (joules)

p represents the pressure in the fluid (Pascal)
Q represents volumetric flow rate (m3)

10.3.2.2  Potential Energy
The energy a fluid possesses due to its height relative to a datum level.

	 Potential energy PE mgz joules( ) ( )= 	 (10.41)

where
m represents mass (kg)
g represents gravitational constant (m/s2)
z represents the height above the datum (m)

10.3.2.3  Kinetic Energy
This is the energy a fluid possesses due to its velocity.

	
Kinetic energy KE joulesm( ) ( )= 1

2
2µ

	
(10.42)

where m represents the mean velocity (m/s).

z3

3

z1

z2

1
2u1

u2

u3

FIGURE 10.9  Conservation of mass.
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10.3.2.4  Specific Energy
Specific energy is the energy per kilogram.

There are three forms of specific energy:

	
1. ( )

Flow energy
m

p Q
m

p
joules/kg= ⋅ = ρ 	

(10.43)

	
2.

Potential energy
m

g z (joules/kg)= ⋅
�

(10.44)

	
3

1
2

. ( )
Kinetic energy

m
u joules/kg2=

�
(10.45)

10.3.2.5  Energy Head
When the energy terms are divided by the weight (m ⋅ g), energy per Newton will be the result. 
Studying the units closely:

	

J
N

N m
N

m (metres)= ⋅ =

This form of energy is normally referred to as the ‘energy head’ and the three forms of energy 
expressed in this way are as follows:

	

FE
mg

p
g

h= =ρ

	

PE
mg

z=

	

KE
mg

u
2g

2

=

The term FE is referred to as the pressure head; previously, it was shown that (p/ρg) = h.
This is the height a liquid will rise to in a vertical pipe that is connected to the system. The poten-

tial energy term is the actual height relative to a datum level. The term u2/2g is called the kinetic 
head; this is the pressure head that results from converting the velocity into pressure.

10.3.3 B ernoulli’s Equation

Bernoulli’s equation is an expression of the conservation of energy. If no energy is added to the 
system such as work or heat, then the total energy of the fluid is conserved. Initially, the only forces 
considered are gravity, pressure and inertia forces. The viscosity forces are assumed to be negligible 
and the fluid is assumed to be a perfect inviscid fluid under steady flow conditions.

Referring to Figure 10.8, the total energy (Et) at sections (1) and (2) must be equal to each 
other. So

	
E p Q mgz m

u
p Q mgz m

u
t 1 1 1 2 2 2= + + = + +1

2
2
2

2 2 	
(10.46)
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Dividing by the mass gives the specific energy form:

	

E
m

p
gz

u p
gz

ut 1
1

2
2= + + = + +ρ ρ1

1
2

2

2
2

2 2 	
(10.47)

Dividing by ‘g’ will give the energy terms per unit weight:

	

E
mg

p
g

z
u
g

p
g

z
u
g

t 1
1

2
2= + + = + +ρ ρ1

1
2

2

2
2

2 2 	
(10.48)

Now, since p/ρg = pressure head ‘h’, the total head is given by the following equation:

	
h h z

u
g

h z
u
gt 1 1 2= + + = + +1

2

2
2
2

2 2 	
(10.49)

This is Bernoulli’s equation expressed in the form of ‘h’, in which each term is an energy head in 
metres. ‘z’ is the potential (or gravitational) head and u2/2g is the kinetic or velocity head.

When considering an actual system, there will be friction within the pipe and elsewhere. Heat is 
produced but will be absorbed by the fluid resulting in a rise in the internal energy and hence tem-
perature. This temperature rise will be very small and if the pipe is long, the energy might be lost as 
heat transfer to the surroundings. As the equations do not include internal energy, the balance will 
be lost and an extra term is required on the right-hand side of the equation maintaining the balance. 
This term is either the head lost due to friction (hL) or the pressure loss (pL)

	
h z

u
g

h z
u
g

h1 1 2 L+ + = + + +1
2

2
2
2

2 2 	
(10.50)

Expressing the equation in the form of pressure:

	
p gz

u
g

p gz
u
g

p1 1 2 L+ + = + + +ρ ρ ρ ρ1
2

2
2
2

2 2 	
(10.51)

EXAMPLE 10.6

Figure 10.10 depicts a tank being filled via a pump delivering water through a pipe of 30 mm bore.
Determine the pressure at position ‘1’ when the flow rate is 0.0014 m3/s. The density of water 

is 1000 kg/m3 and the pressure loss due to friction is 50 kPa.

(1) 

(2) 

25 m 

Water level 

Pump 

FIGURE 10.10  Example 10.6.
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Solution

Internal area of the pipe:

	

A
d

706.86 10 m6 2

=

= ×

= × −

π

π

2

2

4
0 03
4
.

Flow rate (Q):

	 = 0.0014 m3/s

Mean velocity of water (um):

	

=

=
×

=

−

Q
A

1.981m/s

m2

0 0014
706 86 10 6

.
.

Applying Bernoulli’s equation between position ‘1’ and the water level in the tank:

	
p gz

u
p gz

u
p1 L+ + = + + +ρ ρ ρ ρ

1
1
2

2 2
2
2

2 2

Make position ‘1’ the low level of the datum; therefore, ‘z1’ = 0 and z2 = 25 m.
The pressure at the water level will be zero-gauge pressure

	 pL = 50,000 Pa

The velocity of water at position ‘1’ is 1.98 m/s and at the surface of the water level, the veloc-
ity is zero.

Therefore,

	
p 0

1000 1.98
2

0 1000 9.854 25.0 0 50,0001

2

+ + × = + × × + +

Hence,

	 p1 = 294.39 kPa (Ans)

EXAMPLE 10.7

A horizontal nozzle is discharging water into an open vessel at atmospheric pressure. The inlet 
of the nozzle has a bore area of 600 mm2 and the discharge has a bore area of 200 mm2. Figure 
10.11 shows the diagram of the nozzle. Calculate the water flow rate with the inlet pressure that is 
400 Pa. Assume there are no energy losses.

Solution

Applying Bernoulli’s equation between positions (1) and (2):

	
p gz

u
p gz

u
p1 2 L+ + = + + +ρ ρ ρ ρ

1
1
2

2
2
2

2 2
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Using the gauge pressure, p2 = 0 and as the venture is horizontal, the potential terms cancel 
out. The loss term is also zero; hence, the equation simplifies to the following:

	
p

u u
1

1
2

2
3

2 2
+ =ρ ρ

From the continuity equation:

	
u

Q
A

Q
Q1

1
= =

×
=4

0 6
3 5372π .

.

	
u

Q
A

Q
Q2

2
= =

×
=4

0 2
31 8312π .

.

Substituting these values into Bernoulli’s equation:

	
400 1000

(3.537Q)
2

1000
(31.831Q)

2

2 2

+ × = ×

	 400 6255.185Q 506606.3Q2 2+ =

Therefore,

	 400 = (506,606.3 – 6255.185) Q2

	

400
500,351.11

 = Q2

	 Q = 0.0283 m3/s (Ans)

10.3.4 S tagnation Point

Consider a circular bar located within a flowing fluid whether it is a liquid or gas. The fluid will hit 
the part and divide to go to either side of the body as shown in Figure 10.12.

At the point where the fluid parts, there will be an area in which the fluid will have zero velocity. 
Stagnation points exist at the surfaces of objects within the flow field where the fluid is brought to 
rest by the object. Wings on an aircraft are a further example, where the airstream parts at the lead-
ing edge to either flow above or below the wing surface, thereby providing lift.

In the flow stream, Bernoulli’s equation shows that the energy comprising pressure + veloc-
ity + head is constant and as a result at the stagnation point, the pressure is increased from ‘p’ to 
p + (ρu2/2) as the velocity energy is converted into pressure energy. For a uniform density fluid, the 
value of p + (ρu2/2) is known as the stagnation pressure of the streamline.

(1) (2) 

FIGURE 10.11  Horizontal venturi. (1) Inlet and (2) discharge.
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A manometer connected to the point ‘X’ (Figure 10.12) would indicate the stagnation pressure 
((p/ρg) + (u2/2g)). If the static head (p/ρg) is known, then by subtraction, the velocity head and 
hence the velocity can be easily calculated. This is the basis of operation for a Pitot tube to measure 
airspeed.

10.4  HYDROSTATICS

The definitions of hydrostatics include the following:

The pressure exerted by a fluid at equilibrium at a given point within the fluid, due to the force of grav-
ity. Hydrostatic pressure increases in proportion to the depth measured from the surface because of the 
increasing weight of the fluid exerting downward force from above.

In essence, the study of hydrostatics covers fluid bodies that are at rest or moving sufficiently 
slowly; so, there is no relative motion between the adjacent parts of the body.

There are only pressure forces acting perpendicular to any surface and there are no shear stresses.

10.4.1 B uoyancy

The principles of Archimedes state that the upthrust on a body fully or partly immersed in a fluid at 
rest is equal to the amount of fluid displaced.

A floating body will be in equilibrium under the action of the weight ‘W’ acting vertically down-
wards at its centre of gravity ‘G’ as shown in Figure 10.13. The upthrust ‘R’ acts vertically upwards 
through the centre of buoyancy ‘B’ for equilibrium.

Hence,

	 Weight of body ‘W’ = Upthrust ‘R’
	                    = Weight of liquid displaced

‘R’ and ‘W’ must act in the same vertical straight line.

X

Fluid flow 

Point of impact 

Circular bar
in fluid flow

FIGURE 10.12  Circular bar in a fluid flow.

R

W

Displaced
liquid 

FIGURE 10.13  Archimedes’ principle.
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The surrounded fluid acting on an immersed body generates an upward thrust and this is known 
as the force of buoyancy. This thrust acts through the centroid of the displaced volume, and this is 
referred to as the centre of buoyancy. The centre of buoyancy is not the same as the centre of grav-
ity that relates to the distributed weight within the body. If the body is solid with a uniform density 
identical to water and the body is fully immersed in water, the force of the buoyancy will be exactly 
equal to the weight, and in this case, the centre of buoyancy will be the same as the centre of gravity. 
The body will then be in equilibrium with the surrounding fluid.

This principle also applies to gasses as well as liquids. A balloon, filled with hydrogen having 
a lower density to that of the surrounding air at the sea level, will then rise to a height where the 
weight of air that is displaced equals the weight of gas in the balloon.

EXAMPLE 10.8

It is required to lay a steel pipeline for conveying gas across a stretch of water. The pipeline will 
be completely immersed in water and will be anchored at intervals of 3.0 m along its length. The 
details of the pipeline are

	 Internal diameter = 1.20 m
	 External diameter = 1.25 m

Calculate the buoyancy force in N/m run and the upward force acting on each anchorage. The 
density of steel is 7900 kg/m3, and that of water is 1000 kg/m3.

Solution

Buoyancy force/metre run = upthrust/metre run:
	 = Weight of water displaced/metre run

	
= × × ×

( . )
.

1000 9 81
1 25
4

2π

	 = 12.039 kN/m

The anchorages are 3.0 m apart; therefore

	 Upward force on anchorage = (buoyancy force – weight)

For 3.0 m length of pipe:

	

The weight of 3 m length of pipe = × × × −
3 0 7900 9 81

1 25 1
. ( . )

( . .π 220
4

2)

= 22.369 kN

Buoyancy force on 3.0 m length of pipe:

	 = 3.0 × 12.039

	 = 36.117 kN

Hence, upward force acting on the anchorage:

	 = (36.117 – 22.369) kN

	 = 13.748 kN (Ans)

In a situation where the centre of gravity (G) does not have the same location as the centre 
of buoyancy (B), the body will orientate itself so that the centre of gravity is below the centre of 
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buoyancy (see Figure 10.14). The figure considers a hollow vessel that has a heavy mass in a fixed 
position within the vessel. In this case, the centre of buoyancy is well above the centre of gravity for 
the vessel and as such, the vessel is in a stable equilibrium position.

If the vessel had a centre of buoyancy that was below the centre of gravity but on the same 
centreline as in Figure 10.15a, the vessel would, in theory, be in a stable position. If the vessel was 
displaced by a small angle, the vessel would then be in an unstable position; a couple would be gen-
erated to rotate the vessel to an equilibrium position where the centre of buoyancy will be above the 
centre of gravity as in Figure 10.15b.

The definition for stable and unstable equilibrium can be simply stated as when an immersed 
body, initially at rest, is displaced so that the force of buoyancy and the centre of gravity are not on 
the same vertical line:

	 1.	The body is stable if the resulting couple tends to bring the body back to its original 
position.

	 2.	The body is unstable if the resulting couple moves the body away from its original position.

10.4.2 M etacentre and Metacentre Height

In Figure 10.16a, a rectangular vessel is immersed in water where the centre of buoyancy is at 
position ‘B’, the centre of gravity is at ‘G’ and the waterline is at ‘S:S’. Consider the vessel that is 
now tilted to the position shown in Figure 10.16b where the waterline is now at ‘S:S’. The centre of 
buoyancy has now moved to position ‘B1’. There is an upthrust ‘W’ due to the buoyancy at ‘B1’ and 

Centre of 
buoyancy 

Centre of 
gravity 

Upthrust 

Weight 

FIGURE 10.14  Centre of gravity.

W

Centre of
buoyancy 

Centre of
gravity (G)  

G1

W

(a) (b)

θ

θ

B

G1

G 

W

B

FIGURE 10.15  Centre of gravity. (a) Stable and (b) unstable.
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the weight of the vessel ‘W’ is acting down at ‘G’ (the centre of gravity). A couple ‘W ⋅ a’ is acting 
to restore the vessel back to its original equilibrium position.

Drawing a line vertically to intersect the line joining the centre of buoyancy and the centre of 
gravity will give the position of the metacentre for the position of the vessel shown. Heeling the 
vessel further will produce different metacentre positions. Provided that the metacentre remains 
above the centre of gravity, the vessel will remain stable and will return to its equilibrium position.

The metacentre height is the distance between the metacentre and the centre of gravity.
If the vessel is tilted far enough where the metacentre is below the centre of gravity, then the ves-

sel will become unstable and could result in capsizing.
From the above discussion, the following conclusions can be made:

•	 A floating vessel is stable provided that the metacentre lies above the centre of gravity ‘G’.
•	 A floating vessel is in neutral equilibrium if the metacentre lies on the centre of gravity ‘G’.
•	 A floating vessel is unstable if the metacentre lies below the centre of gravity ‘G’.

EXAMPLE 10.9

A vessel has a displacement of 2.5 × 106 kg in freshwater. A mass of 20 × 103 kg is moved across 
the deck of the vessel causing a tilt of 4.4°.

Calculate the transverse metacentre height.

Solution

The overturning moment created when a mass of 20 × 103 kg is moved 9 m across the deck

	  = (20 × 103 × 9.81) × 9 N/m

	  = 1.7658 × 106 N/m

The restoring moment:

	  = W ⋅ x
	  = W ⋅ GM ⋅ θ  (GM is the distance between the centre of gravity and the metacentre.)

Since W = 2.5 × 106 × 9.81 N and θ = 4.4°.

The restoring moment

	  = 2.5 × 106 × 9.81 × 4.4° × GM

The vessel is in equilibrium while in the tilted position.

B

S SG

(a) 

B

S SG

B1

M

Curve of
metacentres

Curve of
buoyancy

S1

S1

(c) 

W

S1 S1

G
B1

W

a
(b) 

FIGURE 10.16  Metacentre height.
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The overturning moment represents the righting moment:

	 20 × 103 × 9.81 × 9 = 2.5 × 106 × 4.4° × GM

Metacentric height (GM):

	

= ×
×

=

20 9
2500 0 07667.
0.939 m (Ans)

10.4.3 P ressure in Liquids

A perfect fluid cannot oppose or apply any shear force and is defined as non-viscous (or inviscid) 
under all conditions. The intensity of normal forces is called the pressure and will be positive if the 
fluid is compressed.

Consider a small element of fluid of a uniform width that is subject to pressures px, py and pz as 
shown in Figure 10.17. It is assumed that the element is so small that the pressures are assumed to 
be uniform across the faces of the element (gravity is not considered).

Equating forces:

	
P A A Pz y⋅ ⋅ =sin sinθ θ

	 (10.52)

	 P A A Pz x⋅ ⋅ =cos cosθ θ 	 (10.53)

This example illustrates a perfect liquid and to a large extent, for real fluids, the pressure at a 
point will be the same in all directions (or the element would move in the direction of least pres-
sure). If no other forces are acting on the body of the fluid, the pressure must be the same at all 
neighbouring points. Therefore, in this case, the pressure will be the same throughout the fluid and 
will be the same in any direction at a point (Pascal’s principle). In SI units, pressure is expressed in 
N/m2 (Pascal).

A practical application of the above principle is seen in the humble car jack where a small piston 
can exert sufficient force to raise an automobile off the road. Figure 10.18 illustrates the principle 
behind this.

In the figure, it is seen that a small piston and cylinder (A) are connected to a much larger piston 
and cylinder (B). When a force is applied to the piston (A), the pressure in the fluid (A) will be

	
P

F
AA

A

A

=
	

(10.54)

θ

Pθ

Py

Px

Area = A 

FIGURE 10.17  Pressure in liquids.
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where
PA is the pressure in cylinder (A)
FA is the force from piston (A)
AA is the area of cylinder (A)

As the two cylinders are interlinked, the fluid pressure in cylinder (B) will be equal to that of 
cylinder (A) according to Pascal’s law.

That is

	 PA = PB	 (10.55)

Therefore, the force generated by piston (B) will be

	 FB = AB × PA	  (10.56)

or

	
F

A
A

FB
B

A
A=

	
(10.57)

Distance moved:
The distance ‘h’ moved by piston (A) will displace a volume of fluid:

	 ∆V h AA A= ⋅ 	 (10.58)

The piston (B) will move a distance:

	
h

A
A

hB
A

B
A=

	
(10.59)

EXAMPLE 10.10

It is required to lift a part of a vehicle to facilitate changing a wheel. The vehicle weight is 1.5 t.
Design a hydraulic jack that will lift a mass of 560 kg using a handle of 300 mm long with a 

hand force of approximately 40 N (4.07 kg).
Figure 10.19 depicts the arrangement of the jack that is fitted with a non-return valve to enable 

a suitable height to be obtained with steady pumping.

Oil 
Oil 

Small force Large force 

DB
DA

FIGURE 10.18  Force amplification.
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Solution

Vehicle weight = 1.5 t.
Assuming the jack carries a quarter of this weight and allowing a safety factor of 2 for the proof 

load:

	

Jack proof load
1500 kg

4
2

750 kg

= ×

=

The force to be exerted by the lifting piston:

	 = 751 × 9.81 N

	 = 7354.98 N

The diameter of the lifting cylinder:

	 = 50.0 × 10−3 m

	

Area A(

1.9635 10 m

L

3 2

)
( . )= × ×

= ×

−

−

π 50 0 10
4

3 2

The pressure in the lifting cylinder (PL):

	

P
lifting force

area of lifting cylinder

7354.98 N
1.9635 10 m

L

3 2

=

=
× −

PP 3.746 10 PaL
6= ×

The diameter of the pumping cylinder (Dia’p)

	 Dia’p = 12.0 × 10−3 m

Piston ‘B’ 
Piston ‘A’ Release valve 

Non-return valves
Reservoir

Force in

Force out

FIGURE 10.19  Example 10.10.
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The area of the pumping cylinder (Ap):

	

A

113 97 1 m

p

6 2

= × ×

= ×

−

−

π ( . )

.

12 0 10
4

0 0

3 2

The force required on the pumping cylinder (Fp):

	 Fp = pressure × Ap

	 = 3.746 × 106 Pa × 113.097 × 10−6 m2

	 = 423.647 N

Pumping force FA: Taking moments about a pivot point offset 25.0 mm from the centre of piston 
‘A’ (Figure 10.19):

	

F
25.0 10 mm 423.647 N

300 10 mm

F 35.3N (3.6 kg)

A

3

3

A

= × ×
×

=

−

−

The stroke of the pumping cylinder (hp) will be approximately 12 mm and the stroke of the lift-
ing cylinder (hL) will be

	

h
area
area

h

0.691 1

L
p

L
p= ×

= ×
×

× ×

= ×

−

−
−113 097 10

1 9635 10
12 0 10

6

3
3.

.
.

00 m say 0.690 mm3−

10.4.4 P ressure Due to the Weight of a Liquid

If a tank with a cross-sectional area ‘A’ and a depth ‘h’ is open to the atmosphere, the surface of the 
liquid will be at atmospheric pressure. If pressure measurements are made at various depths, the 
pressure will be found to increase linearly as shown in Figure 10.20.
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FIGURE 10.20  Pressure due to the weight of a fluid.
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The volume of the liquid is

	 V = Ah m3	 (10.60)

The mass of the liquid will be

	 m = ρV

	 = ρAh kg

Multiplying the mass by the gravitational constant ‘g’:

	 W = mg

	 = ρAhg Newton

It follows that the pressure at the bottom of the tank will be

	
p

W
A

N/m2=

The pressure at a depth ‘h’ in a liquid is given by the following equation:

	 p = ρgh N/m2 (pascal)	 (10.61)

EXAMPLE 10.11

A water tank is fitted with a circular inspection hatch of 0.75 m diameter and is located on the 
bottom of the tank at a depth of 5 m. The density of water is 1000 kg/m3.

Calculate the force acting on the hatch due to the water pressure.

Solution

The pressure at the bottom of the tank:

	 p = ρgh

where
ρ = 1000 kg/m3

g = 9.81 m/s2

h = 5 m

	 p = 1000 × 9.81 × 5
	  = 49.05 kPa

The force acting on the hatch is a product of the hatch area and pressure.

	

A
d

0.4418 m

2

2

=

= ×

=

π

π
4

0 75
4

2.
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The force ‘F’ = p ⋅ A:

	 = 49.05 × 103 × 0.4418
	 = 21.67 × 103 N
	 = 21.67 kN

10.4.5  Forces on Submerged Surfaces

A section submerged vertically below the surface of a liquid will have variable force acting on it due 
to the varying pressure of the liquid with the increase in depth.

Figure 10.21 shows a vertical rectangular section fully immersed in a liquid.
From Section 10.4.4, the pressure at a depth ‘h’ in a liquid is given by Equation 10.61:

	 p = ρgh

In this example, ‘h’ is being replaced by ‘y’ to denote depth for reasons that will become obvious.
Hence,

	 p = ρgy	  (10.62)

The force acting on the elemental strip due to this pressure is

	 dF = p dA = ρBgy dy	 (10.63)

The total force acting on the surface due to the pressure is denoted by ‘F’ and is obtained by 
integrating this expression between the limits y1 and y2.

	
F gB

y y
2

= −





ρ 2
2

1
2

This expression can then be factored:

	
F gB

(y y )(y y )
2

2 1 2 1= − +





ρ

dy 

y
y

C of G 

B

SS S S

y1

D

y2

FIGURE 10.21  Submerged section.
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Now, (y2 – y1) = D (the depth of the surface); so, B(y2 – y1) = B ⋅ D = total area of the surface.
(y2 – y1)/2 is the distance from the free surface to the centroid y.

It follows that the total force is given by the expression:

	 F gAy= ρ 	 (10.64)

The term ‘Ay’ is the first moment of area and the total force on the submerged surface is

	 F = ρg × first moment of area about the free surface

Note: The first moment of area is the area x the distance from the centroid of the area to an axis, in 
this case, the free surface ‘S:S’.

10.4.6 C entre of Pressure

The centre of pressure is that point on which it is considered that the total force is assumed to act on a 
submerged section. Referring to Figure 10.21, the force acting on the strip is ‘dF’. This force produces 
a turning moment on the section with respect to the axis ‘S:S’. The turning moment due to dF is

	 dM y dF gBy dy2= = ρ 	 (10.65)

The total turning moment about the axis ‘S:S’ due to the pressure is found by integrating Equation 
10.65 between the limits y1 and y2.

Hence

	

M = gBy dy

gB y dy

2

y

y

2

y

y

1

2

ρ

ρ

1

2

∫

∫=

By definition:

	

I B y dyss
2

y

y

1

2

= ∫

Therefore

	 M = ρgIss

This moment should also equal to that obtained from the total force ‘F’ multiplied by the dis-
tance ‘h’. The position at the depth ‘h’ is called the ‘centre of pressure’.

h is determined by equating the moments:

	

M h F

h g A y

g ISS

= ⋅
=
=

ρ
ρ
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SS
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h

second moment of area
first moment of area

about S:S= ‘ ’
	

(10.66)

To resolve this expression requires a degree of experience with the parallel axis theorem that is 
required to resolve the second moment of area about the free surface.

The parallel axis theorem is as follows:

	 I I AySS CG
2= +

where
ISS is the second moment about the free surface S:S
ICG is the second moment of area about the centroid C of G

Table 10.3 gives some geometric properties of common figures.

TABLE 10.3
Geometric Properties for Some Common Figures

Area ‘A’
2nd Moment of Area Igg about 
Axis G:G through the Centroid

Rectangle

G G

b

d
d/2 

bd bd
12

3

Triangle

h

b

G G h
3

b h
2
⋅ b h

36

3⋅

Circle R 
G G 

D = 2 × R 

πD
4

2 πD
64

4

Semi-circle

G
R

G
4R
3π

πR
2

2 0.1102 R4
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EXAMPLE 10.12

A rectangular inspection plate is fitted onto a steel water-storage tank as shown in Figure 10.22.
Calculate the total force acting on the inspection plate and the position of the centre of pres-

sure. Also, calculate the total moment about the bottom edge of the plate. Assume the water 
density is 1000 kg/m3.

Solution

Total force  F g A= ρ y
For the plate:

	

y 0.75 0.5 (m)

1.25 m

Area 1.0 0.75 (m )

0.75 m

F 1000 9.81 0.7

2

2

= +
=

= ×

=
= × × 55 1.25

9.197 kN

×
=

	
h

second moment of area
first moment of area

=

First moment of area:

	 = = × =Ay 0.75 2 1.5 m3

Second moment of area:

	

I
BD
12

Ay

1.25
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SS

3
2

2

4

=






+

= ×





+ ×

=

0 75 1 0
12

0 75
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( . )

	

h
I
Ay
0.823m

SS=

=

0.75 m
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Inspection plate 

S S 

C G

y

FIGURE 10.22  Example 10.12.
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The distance from the bottom edge:

	   x = 2.5 – 0.823
	 = 1.677 m

The moment about the bottom edge:

	 = Fx
	 = 9.197 × 103 × 1.677
	 = 15.42 kN m

10.5  DIMENSION ANALYSIS

The United Kingdom has adopted the system of metric units known as the Système International 
d’Units, abbreviated to SI. In some old designs imperial units are still being used, these are being 
phased out as these designs are updated.

The SI has six basic units; these are arbitrarily defined as

Length Metre (m)

Mass Kilogram (kg)

Time Second (s)

Temperature Degree (θ)

Electric current Ampere (A)

Luminous intensity Candela (cd)

The last two items are not used in fluid mechanics, temperature is only used infrequently.
All other units are derivations of these four fundamental units, M, L, T and θ. Other systems of 

units could be used but staying with M, L, T, θ removes any constraints to a particular system of 
measurement.

10.5.1 D imensions

In mechanics, all quantities can be expressed in terms of these fundamental dimensions of mass M, 
length L and time T.

Hence

	
Acceleration

Distance
(Time)2=

So that

	
Dimensions of acceleration

Dimension of distance
(Dimension of

=
ttime)

L
T2 2=

So that

	

Dimension of force Dimension of mass dimension of accelera= × ttion

ML
T2=
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And when written down in dimensional form:

	 = MLT−2

Table 10.4 shows the dimensions of common quantities.

10.5.2 D imensional Equations

When an equation is to represent a physical or real quantity, the terms on both sides must be of the 
same sort. For example, all forces as well as both sides should be numerically equal, otherwise, the 
equation will be meaningless. Every term must have the same dimensions, so that like is compared 
with like.

As an example, consider the equation v2 = u2 + 2as.
This equation calculates the final velocity ‘v’ of a mass which starts with an initial velocity ‘u’ 

and then receives an acceleration of ‘a’ for a distance of ‘s’. When dimensions are substituted for the 
quantities, each term must have the same dimensions if the equation is to be true.

TABLE 10.4
Dimensions of Some Common Quantities

Quantity Description Dimension

Length, size Include all linear measurements L

Area Length × length L2

Volume Area × length L3

First moment of area Area × length L3

Second moment of area Area × length2 L4

Angle A ratio; arc/radius 1

Strain A ratio 1

Time T

Velocity Distance/time LT−1

Angular velocity Angle/time T−1

Acceleration Velocity/time LT−2

Angular acceleration Angular velocity/time T−2

Kinematic viscosity Dynamic viscosity/mass density L2T−1

Mass M

Force Mass × acceleration MLT−2

Weight Force MLT−2

Mass density Mass/volume ML−3

Specific weight Weight/volume ML−2T−2

Pressure (intensity) Force/area ML−1T−2

Shear stress Force/area ML−1T−2

Elastic modulus Stress/strain ML−1T−2

Impulse Force/time MLT−1

Momentum Mass × velocity MLT−1

Work, energy Force × distance ML2T−2

Power Work/time ML2T−3

Moment of a force Force × distance ML2T−2

Dynamic viscosity Shear stress/velocity gradient ML−1T−1
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The dimensions of the quantities are

	 v = LT−1

	 u = LT−1

	 a = LT−2

	 s = L

The dimensions of v2 are  (LT−1)2 = L2T−2.
The dimensions of u2 are  (LT−1)2 = L2T−2.
The dimensions of 2 as are  (LT−2) × L = L2T−2.

All three dimensions have the same form and therefore the equation is dimensionally correct and 
therefore could represent a real event.

There are other quantities that require more careful consideration when writing in the basic 
MLTθ form. Force is one such important unit. In SI, the unit of force is the ‘N’. Engineers have 
agreed to define force as the need to accelerate 1 kg mass at an acceleration of 1 m/s2. The Newton 
is a derived unit that is equal to 1 kg m/s2. In a dimensional form, the dimensions of force becomes 
MLT−2 and this has to be considered when writing dimensions containing force.

EXAMPLE 10.13

Deduce the basic dimensions for pressure.

Solution

The definition of pressure is

	
p

force
area

=

Pascal is the SI unit for pressure and the units are N/m2.
The dimensions for force is MLT−2 and for area is L2. Therefore, the basic dimensions for pressure is

	
p

MLT
M

2

2=
−

This can be written in standard form:

	 p = ML−1T−2 (Ans)

10.6  FLUID DRAG

If an object is placed in a flowing fluid, a resistance to the flow will be generated causing the object 
to be pulled by the fluid in the direction of the fluid flow. This resistance is known as ‘drag’ and is a 
function of the form of the object and skin friction between the object and the fluid.

	 1.	  Form drag (or pressure drag) is based on the pressure difference between the upstream and 
downstream surfaces of the object.

	 2.	  Skin friction resulting from the viscous shear of the fluid flowing over the object’s surfaces.

10.6.1  Form Drag

Form or pressure drag is applicable to bodies that are tall in comparison with their length in the 
direction of the flow. Figure 10.23a depicts such a body in a flowing fluid and these bodies are 
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known as ‘bluff bodies’. Figure 10.23b shows a streamlined body in a flowing fluid and as is seen 
there is very little disturbance to the flow around the body.

Examples of bluff bodies would be the valve plate in a shut-off valve and the leg of a pier or 
bridge support in a river. In this instance, the fluid locally speeds up around the leading edge of 
the body and the boundary layer quickly breaks away from the surface. The fluid is sucked in from 
behind the body in the opposite direction. This creates a wake behind the body and this in turn cre-
ates a lower pressure region resulting in a significant form drag.

If the body was shaped as in Figure 10.23b, the amount of drag produced by the section would 
be appreciably reduced, the low-pressure region will be reduced, and the wake produced will also 
be smaller. If a road vehicle is fitted with a streamlined body, it is able to attain a higher speed than 
without it, showing the significant reduction in form drag.

10.6.2 S kin Friction Drag

If a flat plate is immersed in a flowing fluid with the plate orientated to be parallel to the flow, when 
the flow hits the leading edge of the plate the flow is retarded and a thin layer is formed by the fluid 
flowing along one side of the flat plate as shown in Figure 10.24a and b. The flow close to the surface 
of the plate slows down and the flow in this region is considered laminar. This slowing of the fluid 
is due to the viscous nature of the fluid.

The layers above the surface are moving therefore shearing is taking place between the layers of 
the fluid. The shear stress acting between the surface and the first moving layer is called ‘the wall 
shear stress’ and is denoted by the symbol ‘tw’.

Wake 

(a) (b)

Wake 

FIGURE 10.23  (a) Bluff and (b) streamlined bodies.
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FIGURE 10.24  (a) and (b): Boundary layer.
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The velocity of the fluid is increasing from zero at the surface of the plate to a maximum ‘uo’ at 
a distance ‘δ’ above it. This layer is called the ‘Boundary Layer’ and ‘δ’ is the boundary layer thick-
ness. Figure 10.24b shows how the velocity ‘u’ varies with the thickness of the layer ‘y’.

Refer to Figure 10.24a again. At the leading edge of the plate, as the flow is retarded due to the 
viscous resistance and the boundary layer is originated, more flow is slowed down due to the vis-
cous forces and the boundary layer then begins to thicken. At some point, the laminar flow loses 
stability and the flow becomes less even. This point where the laminar flow deteriorates is known as 
the ‘transition point’ and is at the start of the region called the transition region where the laminar 
flow changes to turbulent flow. At the plate surface, a thin laminar sub-layer will remain below the 
turbulent boundary layer.

The boundary layer thickness ‘δ’ grows in thickness with distance from the leading edge. At 
some distance from the leading edge, the layer reaches a constant thickness and then it is called a 
‘fully developed boundary layer’. The Reynolds number in these cases is

	
(R )e x

o 
u x= ρ
µ 	

(10.67)

where x is the distance from the leading edge.
At low Reynolds numbers, the boundary layer may be laminar throughout the entire thickness of 

the layer. At higher Reynolds numbers, the flow is turbulent meaning at some point from the leading 
edge the flow within the boundary layer becomes turbulent.

A turbulent boundary layer is very unstable where the streamlines do not remain parallel to each 
other. The shape of the boundary layer represents an average of the velocity of the fluid at any height.

Between the laminar and turbulent section, there is a transition. The turbulent boundary layer 
exists on top of a thin laminar known as the ‘laminar sub-layer’. The velocity gradient within this 
layer is linear. Further analysis would show that, for long surfaces, the boundary layer will be tur-
bulent over most of its length. A number of equations have been developed to describe the shape of 
the laminar and turbulent boundary layers.

10.6.3 E stimating Skin Drag

Skin drag is a result of the wall shear stress ‘τw’ and acts on the wetted surface area. The drag force is

	 R = τw × wetted area	 (10.68)

The dynamic pressure is the pressure that results from the conversion of the kinetic energy of the 
fluid into pressure energy and is defined by the expression ρu /o

2 2. The drag coefficient is defined as

	

C
Drag force

Dynamic pressure wetted area

R
u wetted a

Df

o

= ×

=
×

2
2ρ rrea

u
w

o

= 2
2

τ
ρ 	

(10.69)

EXAMPLE 10.14

Calculate the drag force on both sides of a thin smooth rectangular plate 1.0 m wide × 2.0 m long 
where the 2.0 m length is parallel to the flow of fluid having a velocity of 40 m/s. The density of 
the fluid is 1000 kg/m3 and its dynamic viscosity is 8 cP.
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Solution

	

(R )

.

e x =

= × ×

= ×

ρ
µ
u L

1 1

o

6

1000 40 2
0 008

0 0

	

C 0.074 (10 10 )

0.00295
Df

6= × ×
=

−1 5/

	 Dynamic pressure
uo= ρ 2

2

	

= ×

=

1000 40
2

00

2

8 kPa

	

t CDf dynamic pressure

0.00295 800 10

2360 Pa

R t wetted a

w

3

w

= ×

= × ×
=
= × rrea

2360 2 1.0

4720.0 N (Ans)

= × ×
=

10.6.4 G eneral Notes on Drag Coefficients

In fluid dynamics, the drag coefficient is commonly denoted by cd and is a dimensionless quantity. 
This coefficient is used to quantify the resistance of an object in a flowing fluid and is a helpful 
guide in understanding the importance of the shape of an object in drag resistance. It is also useful 
for comparing various shapes.

Table 10.5 shows the drag coefficients for some common shapes.
A general approach to solving form drag which is due to pressure changes only and the drag 

coefficient due to the pressure only is represented by Cdp and is defined as

	

C
Drag force

Dynamic pressure projected area

R
u projecte

dp

o

= ×

=
×

2
2ρ dd area 	

(10.70)

The projected area is the outline of the shape that is directly facing the fluid flow and the pressure 
that is acting on any point of the surface of the shape is ‘p’. The force that is being exerted by the 
pressure on a small surface area will be p dA. If the shape is inclined at an angle ‘θ’ with the fluid 
flow, the force will be

	 p = cos θ dA	 (10.71)

The total force can be found by integrating the projected surface.

	
R  p  dA= ∫ cosθ� 	

(10.72)
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The pressure distribution over the surface is expressed in the form of a pressure coefficient 
defined as follows:

	
C  

p p
up

o

o

= −2
2

( )
ρ 	

(10.73)

where
po is the static pressure of the undisturbed flowing fluid
uo is the velocity of the undisturbed flowing fluid
ρu /o

2 2 is the dynamic pressure of the stream

If any streamline that is affected by the surface is considered, by applying Bernoulli’s theorem 
between an undisturbed point and any point on the surface, the following will result:

	
p

u
p

u
o

o
2

+ = +ρ ρ2

2 2

	
p p

r
u uo o− = −

2
2 2( )

	
(10.74)

	
C

2(p p
up

o

o

= − )
ρ 2

TABLE 10.5
Measured Drag Coefficients for Some Common Shapes

Shape Figure Drag Coefficient

Sphere 0.47

Half-sphere 0.42

Cone 0.50

Cube 1.05

Angled cube 0.80

Long cylinder 0.82

Short cylinder 1.15

Streamlined body 0.04

Streamlined half-body 0.09
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(10.75)

The equation shows that when u < uo, the pressure will be positive and when u > uo, the pressure 
will be negative.

10.6.5 T otal Drag

As explained previously, drag is made up of two components:

	 1.	Skin friction drag
	 2.	Form drag

This applies to all vehicles including aircraft and automobiles as well as bluff objects such as 
squares, cylinders and spheres. Calculating the drag forces on an object using theoretical methods 
is difficult. The majority of the data is captured using experimental methods including wind tunnel 
analysis and the concept of a drag coefficient is widely used.

The ‘drag coefficient’ is denoted by C and is defined by

	

C
Resistance force

Dynamic pressure projected area

R
u p

C

d

o
d

= ×

=
×

2
2ρ rrojected area 	

(10.76)

EXAMPLE 10.15

A cylinder 100 mm diameter × 350 mm long is in a fluid stream moving at 0.75 m/s. The axis of 
the cylinder is normal to the direction of the fluid flow. The density of the fluid is 1000 kg/m3. The 
drag force is found to be 75 N. At a point on the surface of the body, the pressure is measured at 
90 Pa above the ambient pressure.

Calculate

	 1.	The drag coefficient.
	 2.	The velocity at the specified point on the surface.

Solution

	 Projected area = 0.10 × 0.35 m2

	 = 0.035 m2

R = 75 N
uo = 0.75 m/s
ρ = 1000 kg/m3
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Dynamic pressure (Pd):
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u
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Rearranging the equation to solve for ‘u’:

	

u u
2(p p

r

0.618 m/s

o
o= − −





=

2 )

10.6.6 D rag on a Cylinder

From Equation 10.76, the drag coefficient is defined as

	
C

R
u projected aread

o

=
×

2
2ρ

where the projected area is the length × diameter of the cylinder.
The flow pattern in the wake of the cylinder is dependent upon the Reynolds number and is 

illustrated in Figure 10.25a–d. The figure considers an infinitely long cylinder in a fluid flow that 
provides a two-dimensional flow pattern.

	 1.	At very low velocities, where the Reynolds number is Re < 0.5, the inertial forces are very low 
compared with the viscous forces and the streamlines return to the flow pattern behind the 
cylinder and the drag is roughly proportional to un. The drag is inversely proportional to Cd.

	 2.	Between the Reynolds numbers 2–30, a wake begins to form behind the cylinder. The 
stream lines come together behind the cylinder but small eddies are formed which rotate 
in opposite directions.

	 3.	With the Reynolds numbers between 40 and 70, the eddies elongate and the wake flow 
becomes unstable. As the Reynolds number increases to 70, the eddies elongate and begin 
to break away alternatively from each side of the cylinder.

	 4.	At the higher levels of the Reynolds numbers (Re > 90), the eddies begin to form vortices	
downstream from the cylinder. It is this unsymmetrical behaviour of the flow pattern that 
gives rise to vortex shedding and is also known as the Karman vortex street.
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The drag coefficient (Cd) reaches a minimum of approximately 0.9 at Re = 2000. It then increases 
slightly due to the increasing turbulence of the wake and this position of separation gradually moves 
upstream. The profile drag at this stage is nearly all due to the pressure (form) drag.

As the Reynolds number reaches about 20 × 105, the laminar boundary layer becomes more tur-
bulent before separation. The turbulent boundary layer has a higher kinetic energy than the laminar-
based layer and as such is better able to withstand the adverse pressure gradient.

There is a sudden drop in the drag dropping to about a Cd of 0.3.
With a further increase in the Reynolds number, there is a consequent increase in the drag coeffi-

cient to approximately 0.7. For the Reynolds numbers above 4 × 106, the drag becomes independent 
of the Reynolds number.

Figure 10.26 shows an approximate relationship between Cd and Re for an infinitely long 
cylinder.

It needs to be borne in mind that Cd is not an absolute constant for a given shape. It will vary 
with the speed of the fluid flow being a function of the Reynolds number (Re). As an example, the Cd 
of a smooth sphere will vary from a high value for a laminar flow to 0.47 when in a turbulent fluid 
flow. Figure 10.27 shows the variation in the Cd factor for a sphere with respect to the increasing 
Reynolds number.

An empirical formula that covers the Reynolds number in the range Re = 0.2 to 105 is as follows:

	

Cd = +
+

+24 6

1
0 4

R R
.

e e 	
(10.77)

EXAMPLE 10.16

A 40.0 mm diameter sphere is suspended in a flowing fluid having a density of 750 kg/m3 and a 
dynamic viscosity of 50 cP. The fluid is flowing at 0.6 m/s. (1 cP = 0.001 N ⋅ s/m2.)

Calculate the drag force acting on the sphere.

Oscillating

Wake

(a) (b) (c) (d)

FIGURE 10.25  Fluid flow around a cylinder. (a) Re < 0.5, (b) Re = 2 to 30, (c) Re = 40 to 70 and (d) Re > 90.
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FIGURE 10.26  Drag factor (Cd) for a cylinder.
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Solution
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From Equation 10.77:
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Rearranging the equation to solve for ‘R’:
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FIGURE 10.27  Drag factor (Cd) for a sphere.
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10.7  PROPERTIES OF WATER

Water is described as a colourless, transparent, odourless, and tasteless compound of oxygen and 
hydrogen and is the most abundant compound found on the planet. It covers approximately 70% of 
the Earth’s surface. Water exists in all three states: solid, liquid and gas. It is in dynamic equilibrium 
between liquid and gas states.

Table 10.6 lists the chemical and physical properties of water and Table 10.7 gives the properties 
of water over a range of varying temperatures and saturation pressures. Except where noted other-
wise, data are given for water in their standard state (at 25°C, 100 kPa).

TABLE 10.6
Chemical and Physical Properties of Water

Some Common Thermal Properties of Water
Maximum density at 4°C 1000 kg/m3

Specific weight at 4°C 9.807 kN/m3

Freezing temperature 0°C

Boiling temperature 100°C

Latent heat of melting 334 kJ/kg

Latent heat of evaporation 2.270 kJ/kg

Critical temperature 380–386°C

Critical pressure 22.1 MPa (MN/m2)

Specific heat—water 4.187 kJ/kg K

Specific heat—ice 2.108 kJ/kg K

Specific heat water vaporisation 2.996 kJ/kg K

Thermal expansion from 4°C to 100°C 0.42 × 10−3 K−1

Bulk modulus elasticity 2.15 × 109 Pa (N/m2)

Identifiers
CAS number 7732-18-5

PubChem 962

ChemSpider 937

UNII 059QF0KO0R

ChEBI CHEBI:15377

ChEMBL CHEMBL1098659

RTECS number

Properties
Molecular formula H2O

Molar mass 18.01528(33) g/mol

Density 1000 kg/m3

Melting point 0°C, 32°F, 273.15 K

Boiling point 99.98°C, 211.97°F, 373.13 K

Acidity (pKa) 15.74∼35–36

Basicity (pKb) 15.74

Refractive index (nD) 1.3330

Viscosity 0.001 Pa s at 20°C

Structure
Crystal structure Hexagonal

Molecular shape Bent

Dipole moment 1.85 D
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In line with a number of substances, water can take three basic forms:

Solid: The solid phase of water is known as ice and commonly takes the structure of hard, 
amalgamated crystals, such as ice cubes or loosely accumulated granulated crystals such 
as snow.

Liquid: Water is mostly in the liquid phase at the Earth’s surface at normal temperature and 
pressure.

TABLE 10.7
Properties of Water at Varying Temperatures and Saturation Pressures

Temp
Saturation 
Pressure Density Density

Specific 
Volume

Specific 
Volume Viscosity Viscosity

t psat plig pvap vliq vvap μlig μvap

Pressure Liquid Vapour Liquid Vapour Liquid Vapour

°C MPa kg/m3 kg/m3 m3/kg m3/kg μPa ⋅ s μPa ⋅ s
0.01 0.0006112 999.8 0.004851 0.001 206.1 1792 9.216
10 0.001228 999.7 0.009407 0.001 106.3 1306 9.461
20 0.002339 998.2 0.01731 0.001002 57.76 1002 9.727
30 0.004247 995.6 0.03042 0.001004 32.88 797.4 10.01
40 0.007385 992.2 0.05124 0.001008 19.52 653.0 10.31
50 0.01235 988.0 0.08315 0.001012 12.03 546.8 10.62
60 0.01995 983.2 0.1304 0.001017 7.667 466.4 10.93
70 0.0312 977.7 0.1984 0.001023 5.040 403.9 11.26
80 0.4741 971.8 0.2937 0.001029 3.405 354.3 11.59
90 0.07018 965.3 0.4239 0.001036 2.359 314.4 11.93
100 0.1014 958.3 0.5982 0.001043 1.672 281.7 12.27
110 0.1434 950.9 0.8269 0.001052 1.209 254.7 12.61
120 0.1987 943.1 1.1220 0.001060 0.8912 232.1 12.96
130 0.2703 934.8 1.4970 0.001070 0.6680 212.9 13.30
140 0.3615 926.1 1.9670 0.001080 0.5085 196.5 13.65
150 0.4762 917.0 2.548 0.001091 0.3925 182.5 13.99
160 0.6182 907.4 3.260 0.001102 0.3068 170.2 14.34
170 0.7922 897.5 4.122 0.001114 0.2426 159.6 14.68
180 1.003 887.0 5.159 0.001127 0.1938 150.1 15.03
190 1.255 876.1 6.395 0.001141 0.1564 141.8 15.37
200 1.555 864.7 7.861 0.001157 0.1272 134.3 25.71
210 1.908 852.7 9.588 0.001173 0.1043 127.6 16.06
220 2.320 840.2 11.62 0.001190 0.6609 121.5 16.41
230 2.797 827.1 13.99 0.001209 0.0715 116.0 16.76
240 3.347 813.4 16.75 0.001229 0.0597 110.9 17.12
250 3.976 798.9 19.97 0.001252 0.05008 106.1 17.49
260 4.692 783.6 23.71 0.001276 0.04217 101.7 17.88
270 5.503 767.5 28.07 0.001303 0.03562 97.50 18.28
280 6.417 750.3 33.16 0.001333 0.03015 93.51 18.70
290 7.442 731.9 39.13 0.001366 0.02555 89.66 19.15
300 8.588 712.1 46.17 0.001404 0.02166 85.90 19.65
310 9.865 690.7 54.54 0.001448 0.01833 82.17 20.21
320 11.280 667.1 64.64 0.001499 0.01547 78.41 20.85
330 12.860 640.8 77.05 0.001561 0.01296 74.54 21.61
340 14.600 610.7 92.76 0.001638 0.01078 70.43 22.55
350 16.530 574.7 113.6 0.001740 0.008802 65.88 23.82

360 18.67 527.6 143.9 0.001895 0.006949 60.33 25.72
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Gas: When heat is applied to water, it transforms to a gaseous phase and is known as water 
vapour or steam, which is essentially minute droplets suspended in the air and forming a 
transparent cloud.

With an increase in temperature and pressure, the water enters a fourth state which is a super-
critical fluid. This state is much less common than the other three; it only very rarely occurs in 
nature and happens in deep water hydrothermal vents where the water is heated to the supercritical 
temperature by the volcanic magna and the critical pressure is achieved by the crushing weight of 
the ocean at the extreme depths where the vents are located.

In power generation water boilers, where a supercritical phase can be achieved, the boiler will be 
operating at its most efficient rate where the water is immediately converted into supercritical steam 
without the vapour phase occurring.

10.7.1 S pecific Heat Capacity of Water

Water has a very high specific heat capacity (the second highest after ammonia) together with a high 
heat of vaporisation (2257 kJ/kg at normal boiling point). This is a result of extensive bonding of 
hydrogen between its molecules.

The specific heat is defined as the heat required to raise the temperature of a 1.0 kg of a substance 
by 1.0°C (K). Its units are J/kg K (or J/kg °C).

The designation for specific heat at constant pressure is ‘c’.
When heat is transferred to a liquid, the temperature of the liquid will rise and is directly propor-

tional to the heat transferred (Q):

	 Q = mcDT,

where
m is the mass (kg)
c is the specific heat index
DT is the rise in temperature (oC or K)

The specific heat ‘c’ is reasonably constant but will change significantly when the pressure or 
temperature change is very large.

EXAMPLE 10.17

Calculate the rise in temperature of 5 kg of water when 84 kJ of heat energy is applied.

Solution

Specific heat capacity of water = 4.187 kJ/kg K.
Heat energy input:

	

Q mc T

T
Q
mc

4.012K (Ans)

=

=

= ×
× ×

=

∆

∆

84 10
5 4 187 10

3

3.
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10.7.2 E nthalpy of Fusion

The enthalpy of fusion or heat of fusion is the change in enthalpy resulting from heating a given 
quantity of a substance to change its state from a solid to a liquid. The temperature at which this 
occurs is called the melting point.

The ‘enthalpy’ of fusion is a latent heat, because during the change in state, the introduction of heat 
cannot be observed as a temperature change, as the temperature remains constant during the process. 
The latent heat of fusion is the enthalpy change of any amount of substance when it melts. When the 
heat of fusion is referenced to a unit of mass, it is usually called the specific heat of fusion, while the 
molar heat of fusion refers to the enthalpy change per amount of substance in moles.

The liquid phase has a higher internal energy than the solid phase. This means energy must be 
supplied to a solid in order to melt it and energy is released from a liquid when it freezes, because the 
molecules in the liquid experience weaker intermolecular forces and have a larger potential energy.

When liquid water is cooled, its temperature falls steadily until it drops just below the freezing 
point at 0°C. The temperature then remains constant at the freezing point while the water crystal-
lises. Once the water is completely frozen, its temperature continues to fall.

The specific enthalpy of fusion of water is 333.55 kJ/kg at 0°C. Of common substances, only that 
of ammonia is higher.

10.7.3 E nthalpy of Vaporisation

The enthalpy of vaporisation, HV, also known as the heat of vaporisation or heat of evaporation, is 
the energy required to transform a given quantity of a substance from a liquid into a gas at a given 
pressure (often atmospheric pressure).

It is often measured at the normal boiling point of a substance; although tabulated values are usu-
ally corrected to 298 K, the correction is often smaller than the uncertainty in the measured value.

The heat of vaporisation is temperature dependent (Table 10.8), though a constant heat 
of vaporisation can be assumed for small temperature ranges and for Tr <<  1.0. The heat of 

TABLE 10.8
Heat of Vaporisation

Temperature Hv (kJ/mol (°C))

0 45.054
25 43.99
40 43.35
60 42.482
80 41.585
100 40.657
120 39.684
140 38.643
160 37.518
180 36.304
200 34.962
220 33.468
240 31.809
260 29.93
280 27.795
300 25.3
320 22.297
340 18.502
360 12.966
374 2.066
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vaporisation diminishes with increasing temperature and it vanishes completely at the critical 
temperature (Tr = 1) because above the critical temperature, the liquid and vapour phases no 
longer co-exist.

Table 10.9 gives the constant pressure heat capacity (Cp) for a range of temperatures in J/(g ⋅ K) 
at a pressure of 100 kPa.

10.8  CHANNEL FLOW

Open-channel flow, a branch of hydraulics, is a type of liquid flow within a conduit with a free sur-
face, known as a channel. The other type of flow within a conduit is pipe flow. These two types of 
flow are similar in many ways, but differ in one important respect: the free surface. Open-channel 
flow has a free surface, whereas most pipe flows do not.

Open channels are found in a variety of situations; namely, drainage systems and irrigation sys-
tems. They are also found when diverting water from a natural reservoir in nearby hills to a water 
treatment plant for supplying clean drinkable water to towns and cities.

10.8.1 C hannel Flow

In the above examples, the water flows down an open channel with its top surface open to the air. 
Engineers have to ensure that these channels have sufficient capacity to carry the anticipated flow 
of water.

Figure 10.28a–d shows various cross-sections of typical open channel shapes. Types of open 
channel flow:

•	 Steady flow—when the flow rate (Q) does not change with time.
•	 Uniform flow—when the depth of fluid does not change for a selected length or section of 

the channel.
•	 Uniform steady flow—when the discharge does not change with time and the depth remains 

constant for a selected section, cross-section should remain constant.
•	 Varied steady flow—when the depth changes but the discharge remains the same.
•	 Varied unsteady flow—when both the depth and discharge changes along the length of the 

channel being measured.

TABLE 10.9
Constant-Pressure Heat Capacity

Temperature (°C) Cp (J/(g K) at 100 kPa)

0 4.2176

10 4.1921

20 4.1818

25 4.1814

30 4.1784

40 4.1785

50 4.1806

60 4.1843

70 4.1895

80 4.1963

90 4.205

100 4.2159
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•	 Rapidly varying flow—depth change is rapid, and the cross-section remains constant.
•	 Gradually varying flow—the depth change is gradual with a constant cross-section remain-

ing constant.

10.8.2 H ydraulic Radius

A parameter that is used to express the ratio of the flow cross-sectional area (A) of the channel and 
the wetted perimeter (WP):

	
R

A
WP

=
	

(10.78)

10.8.3  Flow Rate

Flow rate (Q) is the rate at which the fluid, in terms of volume, flows along a channel. Its units 
are m3/s.

If it is assumed that the flow in the channel is uniform, then the flow rate is a function of

•	 The area of the channel (m2)
•	 The hydraulic radius (m)

W

D

Free surface

DL L

X XW

D

W

A = πD2/8 

WP = πD/2 

A = WD 

WP = W + 2D 

A = WD + XD 

WP = W + 2L 

A = Irregular 

WP = Irregular 

D (a)

(c) (d)

(b)

D/2 

Wetted
perimeter 

FIGURE 10.28  Typical open channels. (a) Circular pipe running half full, (b) rectangular channel, (c) trap-
ezoidal channel and (d) natural channel. 
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•	 The slope of the channel (in the direction of the flow)
•	 The roughness of the channel material that is in direct contact with the fluid

The above assumptions can be represented using the ‘Manning equation’:

	
Q

A
n

R S/= × ×2 3 1 2/

	
(10.79)

where
A represents cross-sectional area of the channel (m2)
R represents hydraulic radius (m)
S represents channel slope in the direction of flow (m/m)
n represents Manning coefficient of roughness

10.8.4  Roughness

Roughness is dependent upon the nature of the channel material. Some values of Manning’s 
values for ‘n’ are given in Table 10.10. From the table, it is seen that most materials have a range 
of values. When considering concrete as a material for construction, the smoothest concrete 
with a high class finish has a normal value of approximately 0.011, with a range of 0.010–0.013. 
Laboratory channels with glass side, used for research purposes and modelling, have a value 
of 0.010.

EXAMPLE 10.18

Estimate the normal discharge for a 200 mm inside diameter pipe, lined with a common clay tile, 
running half full. The slope drops 1.0 m over 1000 m.

Solution

	
A

D
m= = × × =

−π π2 3 2
2

8
200 10

8
0 0157

( )
.

TABLE 10.10
Various Values of ‘n’ for the Most Common Channel Surfaces

Channel Surface Description n

Glass, copper, plastic or other smooth surface 0.010

Smooth, unpainted steel, planed wood 0.012

Painted steel or coated cast iron 0.013

Smooth asphalt, common clay drainage tile, trowel finished concrete, glazed brick 0.013

Uncoated cast iron, black wrought iron pipe, vitrified clay sewer pipe 0.014

Brick in cement mortar, float finished concrete, concrete pipe 0.015

Formed unfinished concrete, spiral steel pipe 0.017

Smooth earth 0.018

Clean excavated earth 0.022

Corrugated metal storm drain 0.024

Natural channel with stones and weeds 0.030

Natural channel with light brush 0.050

Natural channel with tall grasses and reeds 0.060

Natural channel with heavy brush 0.100



291Fluid Mechanics

	
WP

D
m= = × × =

−π π
2

200 10
2

0 3142
3

.

	
R

A
WP

m= = =0 0157
0 3142

0 050
.
.

.

From Table 10.10, Manning’s coefficient for clay tile is 0.013.
Substituting these values into Equation 10.79:

	

Q
A
n

R S

Q 5.183 10 m /

/ /

/ /

3 3

= × ×

= × ×

= × −

2 3 1 2

2 3 1 20 0157
0 013

0 05 0 001
.
.

. .

ss (Ans)

EXAMPLE 10.19

Calculate the slope of the trapezoidal channel shown in Figure 10.30 when the flow rate is 
1.42 m3/s. It is formed from unfinished concrete.

Solution

	 A = WD + XD
	 = (2.0 × 0.50) + (0.5 × 0.5)
	 = 1.25 m2

	 WP = W + 2L
	 = 2.0 + (2 × 0.7071)
	 = 3.414 m

	

R
A

WP

0.366 m

=

=

=

1 25
3 414

.
.

Substitute values into Equation 10.79:

	

Q
A
n

R S

1.42
1.25
0.017

0.366 S

/ /

/ /

= × ×

= × ×

2 3 1 2

2 3 1 2

Rearranging:

	

S
n Q

A R

1.445 m per1000 m (Ans)

/

2

= ⋅
⋅





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=

2 3
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10.9  ORIFICE PLATE

An orifice plate is an artificial obstruction placed in a pipeline that is used for the measurement of 
flow rate. Volumetric or mass flow rates may then be determined, this being dependent upon the 
calculation method that is associated with the specific type of orifice plate used.

Bernoulli’s principle is used in the measurement of the fluid flow, where there is a relationship 
between the pressure of the fluid and its velocity, that is, when the velocity increases there is a cor-
responding drop in the fluid pressure and vice versa.

10.9.1 D escription

An orifice plate is a thin plate having a hole carefully machined in the centre of the plate. The plate 
is fixed in the pipeline and is mounted between two coupling flanges in the pipe. The fluid is forced 
to go through the small orifice; there is a point of maximum convergence that occurs a short dis-
tance downstream of the plate. This convergence is known as the vena contracta (see Figure 10.29). 
The velocity of the fluid is increased when going through the orifice and there is a corresponding 
reduction in the fluid pressure. Beyond the vena contracta, the fluid expands back to the pipeline 
diameter and the velocity and pressure return to their original values. Pressure tappings are pro-
vided, one upstream of the plate and the other just downstream.

There are three locations for the tappings:

	 1.	Flange location: The tap locations are 25 mm upstream and 24 mm downstream from the 
face of the orifice plate.

	 2.	Vena contracta location: The tap locations are one internal pipe diameter upstream and 
0.3–0.8 pipe diameter downstream from the face of the orifice plate.

	 3.	Pipe location: The tap location 2.5 internal pipe diameter upstream, and 8 pipe diameter 
downstream from the orifice plate.

It should be noted here that an orifice plate will only work well with a fully developed flow 
profile. This is achieved by using a long upstream pipe usually between 20 and 40 pipe diameter 
before the orifice plate depending upon the Reynolds number or by the use of a flow conditioner. 
Orifice plates are inexpensive and small but the pressure drop is not so well recovered as well as 
a venturi nozzle. If there is sufficient space available, a venturi nozzle is more efficient than an 
orifice plate.

Upstream pressure p1 Downstream pressure p2

Orifice plate

Vena contracta 

Direction of flow Direction of flow 

Fluid density ‘ρ’ do

di

Δp = p1 – p2
Δp

FIGURE 10.29  Orifice plate.
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10.9.2 M easurement

When the fluid flows through the orifice plate, there are frictional energy losses which together with 
the contraction in the diameter of the flow affect the value of ‘Cd’ (coefficient of discharge). The 
shape of the orifice lip is also important; this may be either sharp or flat.

If the Bernoulli equation is applied between positions 1 and 2 in Figure 10.29, the following is 
obtained:

	
h

u
g

h
u
g1

1
2

2
2
2

2 2
+ = +

	
(10.80)

Neglecting u1
2:

	
h h

u
g1 2
2
2

2
= +

	
(10.81)

	 2g(h h ) u1 2− = 2
2

	
u 2g(h h )2 1 2= −

or

	
u

p
2

2= ∆
ρ 	

(10.82)

now

	 Q u A2 o= ⋅

Introducing ‘Cd’ to allow for friction and other factors:

	
Q C A 2g(h h )d o 1 2= ⋅ −

which can be expressed as

	
Q C A

p
d o= 2∆

ρ 	
(10.83)

where
Q represents volumetric flow rate (m/s3)
Ao represents area of orifice diameter (m)
Dp represents differential pressure (Pa)
ρ represents fluid density (kg/m3)

The majority of commercial orifice plate calculations only consider the diameter of the orifice to 
calculate the volumetric flow rate.
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EXAMPLE 10.20

A horizontal pipe with an internal diameter of 25 mm is fitted with an orifice plate having a 20 mm 
diameter hole. The differential pressure across the plate is measured at 750 kPa. It can be assumed 
that the coefficient of discharge is 0.64 and the density of water is 1000 kg/m3.

Estimate the volumetric flow rate in m3/s.

Solution

	
A

d
mo

o 3 2= = × = × −π π2 2

4
0 02
4

0 314 10
.

.
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10.10  FLUID MACHINES

A fluid machine is a device that converts the kinetic or potential energy held in a fluid into mechani-
cal energy, or it is reversible and converts mechanical energy into fluid energy.

Essentially, there are two main types of fluid machines, namely:

	 1.	Positive displacement machines
	 2.	Rotodynamic machines

10.10.1 P ositive Displacement Machines

These come in three forms:

	 1.	Single rotor
	 2.	Double rotor
	 3.	Reciprocating piston

10.10.1.1  Single Rotor
Sliding vane: In this design the vanes are moved by a rotor, drawing fluid into and then forc-

ing the fluid out from the pumping chamber that is formed within the body of the pump 
(see Figure 10.30). Carefully selected vane materials make these pumps well-suited for 
handling low-viscosity, non-lubricating liquids including solvents, fuel oils, petrol and liq-
uidified gas. Fluid viscosities range from 0.5 cSt to 220,000 cSt.

Axial piston: This is a variation in the piston pump described above; here the individual 
pistons are arranged in a circular manner within a cylinder block and are driven by a cam 
plate fitted on the drive shaft. In this type of pump, the fluid is drawn in and forced out 
as the inclined cam plate is rotated about the centreline of the pump. This type of pump 
has the advantage that the flow can be variable; the angle of the cam plate is varied from 
a zero angle where there will be no piston displacement, up to a maximum angle where 
the pistons will have a maximum stroke. These pumps can also be supplied with a fixed 
cam plate.

		  Axial piston pumps have a relatively low flow rate of approximately 70 m3/h (300 galls/
min) but are capable of generating pressures up to 25 MPa (3626 lbf/in2). Figure 10.31 
depicts an axial piston pump.
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Reciprocating piston pump: Fluid is drawn in and out of the pump chamber by a piston that 
reciprocates within a cylinder. The flow of the fluid is controlled by port valves attached to 
the cylinder (see Figure 10.32).

Peristaltic pump: A peristaltic pump is a type of positive displacement pump used for pump-
ing a variety of fluids. The fluid is contained within a flexible tube fitted inside a circular 
pump casing (though linear peristaltic pumps have been made). A rotor with a number of 
‘rollers’, ‘shoes’, ‘wipers’ or ‘lobes’ attached to the external circumference of the rotor 
compresses the flexible tube. As the rotor turns, the part of the tube under compression 
is pinched closed (or ‘occludes’), thus forcing the fluid to be pumped to move through the 
tube (Figure 10.33). Additionally, as the tube opens to its natural state after passing the cam 
(restitution or resilience), fluid flow is induced into the pump. This process is called peri-
stalsis. Typically, there will be two or more rollers or wipers, occluding the tube, trapping 
between them a body of fluid. The body of fluid is then transported, at ambient pressure, 

Suction Discharge

Sliding vanes

Bias spring

Rotor

Housing

FIGURE 10.30  Sliding vane pump.

Drive shaft

Swash plate

PistonsCylinder barrel

Discharge

Suction

Wear plate

FIGURE 10.31  Axial piston pump.
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towards the pump outlet. These pumps are able to pump fluids with solids in suspension 
and low-to-medium viscosity levels. Peristaltic pumps are available with flow rates up to 
1.4 m3/min (307 gallons/min) with differential pressures up to 1.6 MPa (232 lbf/in2).

		  Smaller models generally operate at speeds up to 200 rev/min and the larger models are 
limited to speeds below 100 rev/min.

10.10.1.2  Double Rotor
Circumferential pump: This type of pump as shown in Figure 10.34 is similar to the lobe 

pump but here there are only two ‘teeth’ per shaft and the fluid is carried around in the 
space between the piston surfaces and the fluid chamber. Like the lobe pump, there is no 
sealing contact between the piston surfaces, clearances between the pistons are maintained 
by external timing gears. These pumps have proven to be very reliable. As the circumfer-
ential pump rotates, the expanding volume draws the fluid in and is then forced out the 
discharge port by the reducing volume on the discharge side.

		  Circumferential pumps are available in a range of sizes capable of flow rates up to 
2.3 m3/min (506 galls/min) and discharge pressures up to 3.1 MPa (450 lbf/in2) covering 

Cylinder

Outlet
check valve

Piston

Connecting 
rod

Crank

Inlet check 
valve

FIGURE 10.32  Reciprocating pump.

Suction Roller 
carrier

Roller

Medical quality 
flexible tubing

Discharge

FIGURE 10.33  Peristaltic pump.
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a viscosity range from 50 to 1,000,000 cSt. They are able to pump any product that can 
be moved being able to handle rather large solids and shear-sensitive fluids. They are also 
suitable to run dry for extended periods of time.

Gear pump: (Figure 10.35). Fluid is carried between the gear teeth within a tight fitting cir-
cular cavity and is expelled by the meshing teeth. The inner surface of the pump housing 
provides a continuous sealing and either rotor is capable of driving the other.

Lobe: Lobe pumps are similar to external gear pumps in operation in that the fluid flows around 
the interior of the casing (Figure 10.36). There are three lobes per shaft leaving a cavity 
between the lobe features. Unlike external gear pumps, however, the lobes do not make con-
tact. Lobe contact is prevented by external timing gears located in the gearbox. Pump shaft 
support bearings are located within the gearbox, and since the bearings are out of the pumped 
liquid, the pressure is limited by bearing location and shaft deflection. As the lobes come out 
of mesh, they create expanding volume on the inlet side of the pump. The liquid flows into 
the cavity and is trapped by the lobes as they rotate. Liquid travels around the interior of the 

Suction Discharge

Meshing gears

Housing

FIGURE 10.35  Gear pump.

Rotor

Housing

Rotor

DischargeSuction

FIGURE 10.34  Circumferential piston.
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casing in the pockets between the lobes and the casing—it does not pass between the lobes. 
Finally, the meshing of the lobes forces the liquid through the outlet port under pressure.

Single-screw pump: The fluid is carried between the rotor screw threads which are a close fit 
within a cylinder block. The Archimedes screw is one such example of this machine (see 
Figure 10.37). They can handle fluids containing abrasive and solid particles up to 90 mm 
(3.50 ins) and can also handle multiphase fluids containing up to 99% gas. These types of 
pumps are self-priming and can lift fluids up to 8.5 m (28 ft) and are able to handle any 
fluid that is compatible with the materials of construction.

Double-screw pump: Double-screw pumps have twin external screw rotors that intermesh as 
shown in Figure 10.38. The fluid enters at the central inlet and then splits axially into two 
end sections and as the rotating screws intermesh, chambers are formed and convey the fluid 
to the end receiving chambers formed in the housing and returned to a separate central port.

		  As with the single screw pumps, they can handle a wide range of multiphase fluids and 
are often found in oil production/pipeline applications.

Discharge

�ree lobe rotor

Suction

FIGURE 10.36  Lobe pump.

Lower water 
level

Lower water 
levelScrew rotates in a 

close fitting 
channel

FIGURE 10.37  Single-screw pump.



299Fluid Mechanics

Rotodynamic machines: Within this class of machines, there are three basic pump categories:
	 1.	 Radial flow
	 2.	 Mixed flow
	 3.	 Axial flow

Radial flow pumps—(Figure 10.39): Often simply referred to as centrifugal pumps. 
The fluid enters along the axial plane, is accelerated by the impeller and exits at 
right angles to the shaft (radially). Radial-flow pumps operate at higher pressures 
and lower flow rates than axial and mixed-flow pumps.

Mixed-flow pumps—(Figure 10.40): Mixed-flow pumps function as a compromise 
between radial and axial-flow pumps. The fluid experiences both radial accelera-
tion and lift and exits the impeller somewhere between 0° and 90° from the axial 

Flow of fluid 
in pump

Flow in

Flow out

Drive shaft

Housing

Dual rotors

Drive gears

FIGURE 10.38  Double-screw pump.

Volute

Impellor vane

Flow
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Shaft Impellor

FIGURE 10.39  Radial flow compressor.



300 Design Engineer’s Reference Guide

direction. As a consequence, mixed-flow pumps operate at higher pressures than 
axial-flow pumps while delivering higher discharges than radial-flow pumps. The 
exit angle of the flow dictates the pressure head-discharge characteristic in relation 
to the radial and mixed flow.

Axial flow pumps—(Figure 10.41): Axial-flow pumps differ from radial flow pumps in 
that the fluid enters and exits along the same direction parallel to the rotating shaft. 
The fluid is not accelerated but instead ‘lifted’ by the action of the impeller. They 
may be likened to a propeller spinning in a length of a tube. Axial-flow pumps 
operate at much lower pressures and higher flow rates than radial-flow pumps.

Impellor

Impellor vane

Shaft

Flow

Enclosure

FIGURE 10.40  Mixed flow compressor.

Impellor

Impellor vane

Shaft

Fixed vanesEnclosure

Flow

FIGURE 10.41  Axial flow compressor.
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Introduction to Linkages

11.1  INTRODUCTION

The use of linkages may be found in many walks of life. An example in the home is of the rear 
suspension on a mountain bike. In the building industry, a further example will be of the hydrauli-
cally operated buckets fitted to wheeled loaders; in the aerospace industry, extensive use of linkages 
is found for extending and retracting the aircraft landing gear units including wing flaps and so on. 
In the automotive industry, the vehicle suspension systems rely heavily on the use of linkages for 
maintaining road wheel positions.

In manufacturing, robotic manipulators rely wholly on the science of linkages optimising their 
sections for strength, mass and deflections to enable them to carry heavy loads at high speeds from 
position to position.

The definition of a link is that of a rigid body having two or more pairing elements which connect 
it to other bodies with the prime purpose of transmitting force or motion.

This chapter will briefly cover planar, spatial and spherical mechanisms but focus on four bar 
linkages as these are the most commonly found and will give details of determining velocities and 
accelerations of linkages.

Linkages can be constructed from either open or closed chains or a combination of both. Each 
link in a chain is connected by a joint to one or more other links. These create a kinematic chain 
that can then be modelled using graphical methods in which the links are considered as paths and 
the joints are the vertices.

The movement of the ideal joint can be considered as a sub-group of the group of Euclidean dis-
placements where the number of parameters within the sub-group is called the ‘degrees of freedom’ 
(DOF) of the joint.

One of the prime functions of a mechanical linkage is to transform a given input force or move-
ment into a desired output force or movement. The ratio of the output force to the input force is 
referred to as the ‘mechanical advantage’ of the linkage, while the ratio of the input movement or 
speed to the output movement or speed is referred to as the ‘velocity ratio’.

The velocity ratio and the mechanical advantage are defined so that they produce the same num-
ber in an ideal linkage.

By definition, a kinematic chain in which one of the links is fixed and held stationary is called a 
mechanism. Conversely, a linkage that is designed to be stationary is called a structure.

11.2  BRIEF HISTORY

The use of levers predates Western civilisation for moving heavy objects with only manpower available. 
Examples here include the construction of the pyramids during ancient Egyptian times. Archimedes 
studied the geometry of the lever and together with Hero of Alexandria became the prime sources of 
machine theory. This work lasted up to the fifteenth century when Leonardo da Vinci (1452–1519) in 
his Codex gave information about the use of linkages which he incorporated into his designs.

In the mid-1700s, several designs of steam engines were being proposed amongst them. Thomas 
Newcomen (1664–1729) designed his successful atmospheric steam engine, originally used in the 
tin mines of Cornwall for pumping water out of the mines. James Watt (1736–1819) recognised that 
the efficiency of these early engines could be significantly improved by using different cylinders 

11
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for expansion and condensation of steam. His search for a linkage that could generate approxi-
mately straight lines inspired the mathematician J. J. Sylvester (1814–1897) who was an authority 
on the Peaucellier linkage which generated a straight line from a rotating crank. This work, in turn, 
inspired A. B. Kemp (1849–1922) who showed that linkages could be used for addition and multi-
plication and also for tracing a given algebraic curve.

Around this period, Charles Babbage (1791–1871) proposed his analytical and difference engine 
which made considerable use of cams and linkages, giving an indication of the degree of workman-
ship that was being achieved at this time.

In the late 1800s, F. Reuleaux (1829–1905), A. B. W Kennedy (1847–1928) and L. Burmester 
(1840–1927) formalised the analysis and synthesis of linkages using descriptive geometry. P. L. 
Chebyshev (1821–1894) developed analytical techniques for the study and design of linkages.

In recent years, G. N. Sandor (1913–1997) and F. Freudenstein (1926–2006), using the newly 
developed digital computer for solving the loop equations of a linkage, were able to establish the 
dimensions required to generate a desired function and begin the revolution for computer-aided-
design of linkages. These techniques are now fundamental in the analysis of complex machine 
systems and the control of robotic manipulators.

By combining the computer’s ability to compute the roots of polynomial equations, R. F. 
Kaufman united Freudenstein’s techniques with the geometric methods of Reuleaux and Burmester 
to implement in KINYN an interactive computer program.

11.3  KINEMATIC DEFINITIONS

The following are some definitions that are commonly used in the analysis of linkages.

11.3.1 K inematic Chain

An assemblage of links and bodies, together with joints, interconnected in such a way as to provide 
an output motion that is in response to an input motion.

11.3.2 M echanism

A kinematic chain in which at least one link or body is fixed in relation to the frame of reference (in 
which it itself may be in motion).

11.3.3 M achine

A combination of resistant bodies was arranged in such a way as to compel the mechanical forces 
of nature to do work accompanied by determinate motions.

A kinematic link or bar is a rigid body or assembly which constitutes the parts of a mechanism 
and is the smallest element of the mechanism that transmits motion to other links. A rigid body is 
one which does not deform or change shape due to the application of a force. In a mechanism, three 
types of links, rigid link, flexible link and fluid link, are the most widely used.

11.3.4 D OF

DOF is defined as the number of input parameters which must be independently controlled in order to 
bring the mechanism into useful engineering purposes. It also defines the number of independent rel-
ative motions, both translational and rotational, that a pair can have. DOF = 6 – number of restraints.

To find the number of DOF for planar mechanisms, an equation referred to as Grubler’s equation 
is used where

	 F = 3(n − 1) − 2j1 – j2	 (11.1)
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where
F = mobility or number of DOF
n = number of links including frame
j1 = joints with a single degree of freedom
j2 = joints with two DOF
F > 0, results in a mechanism with ‘F’ DOF
F = 0, results in a statically determinate structure
F < 0, results in a statically indeterminate structure

11.3.5  Rigid Links

A rigid link possesses at least two nodes, where a node is an attachment point to other links or 
bodied via joints.

Links can be classified into the following three categories as depicted in Figure 11.1a–c.

	 1.	Binary link: This is a link that has two nodes.
	 2.	Ternary link: A link that forms three nodes.
	 3.	Quaternary link: A link that has four nodes.

The ternary and quaternary links do not have any relative movement between the nodes within 
the link.

11.3.6  Order of a Link

The order of a link indicates the number of nodes per link as indicated above; there are binary 
(two), ternary (three) and quaternary (four) nodes. Links or bodies can be of any shape and are not 
restricted to those shown in Figure 11.1a–c.

Link order is equal to the number of nodes.

11.3.7  Joints

A joint is a connection between two or more links at their nodes allowing motion to occur between 
the links.

•	 A pivot is a joint that allows rotary motion at the joint.
•	 A slider is a joint that only allows a linear motion.

11.3.8 K inematic Pairs

Kinematic pairs refer to the type of connection that exists between adjacent links. See Section 11.4 
for a more detailed description of kinematic pairs and the definition in the differences between 
lower and higher pairs.

Nodes 
Node

(a) (b) (c)

FIGURE 11.1  Classification of links. (a) Binary, (b) ternary and (c) quaternary links.
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11.3.9 M obility

This is the number of input parameters that have to be controlled independently to bring the mecha-
nism to a set position.

See Section 11.6 for a fuller description.

11.4  KINEMATIC PAIRS

The part of a link that makes contact with another link is called an ‘element’, examples being either 
the bore of a cylinder or a gear tooth or a rotating connection with another link.

The connections between links are made by pairs of elements coming into contact; these connec-
tions are known as ‘kinematic pairs’. The kinematic pairs fall into two categories:

	 1.	Lower pairs
	 2.	Higher pairs

Lower pairs can be defined as those having surface contact where the relative motion is either 
purely turning or sliding. The contact surfaces of a lower pair are complementary to each other, 
such as a journal or plain bearing or a piston within a cylinder. Lower pairs may be defined as those 
allowing one degree of freedom.

Higher pairs may be defined as those having line or point contact, such as gear teeth or a follower 
on a cam. The relative motion in higher pairs is a combination of sliding and turning. The contact 
surfaces are dissimilar. Kinematic pairs formed between gears, cams and followers and ball and 
roller bearings belong to the higher pair category. Higher pairs usually allow two DOFs.

11.4.1  Relative Motion between Kinematic Pairs

The nature of the relative motion between kinematic pairs can be further classified into the follow-
ing types:

11.4.1.1  Lower Pairs
	 1.	Sliding pair: A kinematic pair is said to be a ‘sliding pair’ when two links are so connected 

that one element is constrained to have a sliding motion relative to the element. Figure 
11.2a illustrates a prismatic bar sliding in a rectangular hole. The connection between a 
piston within a cylinder of a slider-crank mechanism is a further example of a sliding pair.

	 2.	Revolute pair: When two links are so connected that only a rotation motion is possible 
between them, the kinematic pair is called a ‘turning pair’. A circular shaft that is retained 
by two collars as shown in Figure 11.2b depicts an example of a turning pair.

	 3.	Cylindrical pair: Where two links are so connected that rotational motion together with 
linear motion is allowed, the kinematic pair is referred to as a cylindrical pair as shown in 
Figure 11.2c.

	 4.	Helical pair: Figure 11.2d shows a screw pair which has rotation as well as translation but 
these two movements are related to each other. Therefore, a screw pair has one degree of 
freedom because the relative movement between the screw and nut can be expressed by a 
single coordinate ‘θ’ or ‘x’. These two coordinates are related by

	

∆ ∆θ
π2

= x
L

		  where L is the lead of the screw.
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	 5.	Spherical pair: When one link is in the form of a sphere that is allowed to turn within a 
fixed link, such a pair is referred to as a ‘spherical pair’, such an example being a ball and 
socket joint (Figure 11.2e).

	 6.	Planar pair: Where the relative motion between items 1 and 2 can be described by x and 
y coordinates in an x–y plane. The x and y coordinates describe relative translation and 
‘θ’ describes relative rotation about the z-axis. This pair has three DOFs. This is shown in 
Figure 11.2f.

11.4.1.2  Higher Pairs
	 7.	Gear pair: The contact between the involute curves that form the meshing teeth of two 

gears is known as a gear pair. The contact between the teeth is considered a point contact. 
Other examples in this category include cams and followers. Figure 11.2g shows a gear 
pair.

Δθ

Δx

Square cross-section 
(a) (b) (c)

Δx

Δθ

1
2

(d) (e)

(f)

Δx

ΔxΔy

Δθ

Δθ

Δq

ΔψΔϕ

Point of contact 
Direction of rotation 

Pressure angle 
(h)

(g)

FIGURE 11.2  Kinematic pairs. (a) Prismatic (P) joint-1 DOF, (b) revolute (R) joint-1 DOF, (c) cyclindrical 
(C) joint-2 DOF, (d) helical (H) joint-1 DOF. joint, (e) spherical (S) joint-3 DOF. joint, (f) planar (F) joint-3 
DOF, (g) gear pair and (h) roller bearing.
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	 8.	Rolling pair: A pair of elements having a rolling motion relative to each other is called a 
‘rolling pair’, where the contact with its mating part is a line contact. Examples are a ball 
or roller within a cage as shown in Figure 11.2h and a pulley in a belt drive.

11.4.2 N ature of Kinematic Constraints

Subject to the nature of the mechanical constraints, kinematic pairs can be classified into the fol-
lowing two categories.

11.4.3 C losed Pair

When two links that form a kinematic pair (Figure 11.3) are restrained mechanically, such a pair is 
called a ‘closed pair’. Examples include screw pairs and turning pairs.

11.4.4  Open Pair

Two links that form a pair (Figure 11.4) that is held together by means of an external force such as 
gravity or spring force will constitute an ‘open pair’. The cam follower used in an IC engine valve 
operating mechanism is an example of an open pair.

Links 

Pivot bolt 

FIGURE 11.3  Closed pairs.

Spring force 

Cam follower 

Cam profile 

Compression spring 

FIGURE 11.4  Open pairs.
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11.5  PLANAR, SPHERICAL AND SPATIAL MECHANISMS

Linkages may be classified into three fundamental groups:

	 1.	Planar
	 2.	Spherical
	 3.	Spatial

11.5.1 P lanar Mechanism

A planar motion is defined as that, when all the particles that make up the body move in parallel 
planes. If the pivot points on a planar mechanism are projected, they will meet at infinity.

An example of a planar link is shown in Figure 11.5a. Planar links will be considered extensively 
in this introduction.

11.5.2 S pherical Mechanism

A body is considered to have spherical motion when all its particles move on the surface of concen-
tric spheres. That is, if the pivot points are projected, they will all meet at the centre of a sphere. 
Figure 11.5b depicts a universal joint that moves in a spherical motion. Other examples include 
some types of robotic arms.

Drive
motor

Pivot

Windscreen
wiper 

Link

ωout

ωin
θ 

(a)

(b)

(c)
Connecting rod

Rocker

Output shaft
(oscillates)

Input shaft
(rotates)

Crank

FIGURE 11.5  Planar, spherical and spatial mechanisms. (a) Example of a planar linkage, (b) example of a 
spherical mechanism (universal joint) and (c) example of a spatial mechanism.
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11.5.3 S patial Mechanism

In a spatial mechanism, particles that make up the body move in paths that do not always remain in 
a plane. Figure 11.5c illustrates one such spatial mechanism. The mechanism shown is referred to as 
a ‘Stewart’ platform (Figure 11.6) and is used extensively as the base mechanism in flight simulator 
platforms. Other examples can also be seen in modern folding pushchair frames.

Both planar and spherical mechanisms can be considered as subsets of spatial mechanisms.
Mechanical linkages are used extensively in mechanical engineering where they are designed to 

transform a given input force and movement into a desired output force and movement.
The ratio of the output force to the input force is referred to as the mechanical advantage of the 

linkage. The ratio of the input velocity to the output velocity is known as the velocity ratio. The 
mechanical advantage and the velocity ratio are defined so that they yield the same number in an 
ideal linkage.

The definition of a link is that of a rigid body having two or more pairing elements that connect 
with other bodies for the specific purpose of transmitting force and/or motion.

In a linkage mechanism, at least one link occupies a fixed position and is referred to as either the 
ground or fixed link.

Linkages come in all sorts of arrangements covering a three-bar linkage to six-bar linkages, 
although they are not restricted to six bars. The more complicated linkages may have more, but 
these are outside the scope of this introduction. Stevenson and Watt linkages usually found on steam 
locomotives are generally six-bar linkages.

Fixed linkages that have only three bars and have no movement between adjacent links are usu-
ally called a truss which is used in structures.

One of the most commonly used linkages is that of the four-bar linkage (usually referred to as 
a four-bar) and is the simplest closed chain linkage. Four-bar consists of three moveable linkages 
connected to a fixed link and connected in a loop connected by four rotating joints. The joints are 
configured so that the links all move in parallel planes and the assemblage is called a ‘planar four-
bar linkage’.

Planar four-bar linkages are important mechanisms in machine design and examples include

•	 Double wishbone suspension
•	 Watt and Chebyshev linkages (these linkages give an approximately straight line motion)
•	 Crank slider (four-bar and one degree of freedom)
•	 Pantograph (four-bar and two DOF, i.e. only one pivot joint is fixed)

Tilting platform 

Common node point 
Hydraulic cylinders 

Fixed base 

FIGURE 11.6  Stewart platform.
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11.6  MOBILITY

When considering a linkage, an important consideration is the number of DOFs the mechanism will 
have. The mobility of a linkage is the number of input parameters which have to be controlled inde-
pendently to bring the mechanism to a set position. This is, generally, the number of independent 
parameters including joint angles and slide distances that are needed to specify the configuration of 
the linkages disregarding any deformation of the links.

The mobility of a system is the sum of the unconstrained DOFs for the links in the system minus 
the constraints imposed by the joints.

A free link usually has three DOFs (x, y, θ). One link is always fixed and is referred to as either 
the fixed or ground link. Before any joints are attached, the number of DOFs of a linkage assembly 
with ‘n’ links is

	 DOF = 3(n – 1)	 (11.2)

Connecting two links using a joint (which has one degree of freedom) adds two constraints. 
Connecting two links that have a joint with two DOFs includes one restraint to the system. The 
number of 1 DOF joint = j1 and the number of joints with 2 DOF joints = j2; the ‘mobility’ of a sys-
tem can be expressed as

	 Mobility = m = 3(n − 1) − 2j1 − j2	 (11.3)

Figure 11.7 gives examples of the mobility of some planar linkages.

Note: In the case of a linkage that has a mobility of ‘0’, this is essentially a structure.

This discussion will be developed further in Sections 11.7 and 11.8.

11.7  CHEBYSHEV–GRUBER–KUTZBACH CRITERION

In Section 11.6, the discussion introduced the concept of mobility and how it was arrived at. In this 
and the following sections, a more formalised method of establishing mobility is discussed.

The Chebyshev–Gruber–Kutzbach criterion is used to determine the DOF within a kinematic 
chain of linkages, that is, a coupling of rigid bodies by means of mechanical constraints and it com-
putes the number of parameters that define the configuration of a linkage that consists of a number 
of individual links and joints together with the DOF that exists at each joint.

Gruber’s equation is written as

	 F = 3(n − 1) − 2I − h	 (11.4)

where
	 F = total DOFs of the mechanism
	 n = number of links (including the frame)
	 I = number of lower pairs (one degree of freedom)
	 h = number of higher pairs (two DOFs)

m = 2, n = 5, j1 = 5
and j2 = 0

m = 1, n = 4, j1 = 4
and j2 = 0

m = 1, n = 4, j1 = 4
and j2 = 0

m = 0, n = 3, j1 = 3
and j2 = 0

FIGURE 11.7  Mobility of planar linkages.
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EXAMPLE 11.1

Consider a transom that is fitted above a door as shown in Figure 11.8 where the transom is 
opened and closed by means of the link (1).

It is required to calculate its degree of freedom.

Solution

n = 4 (link 1, 5, 6 and frame 2), I = 4 (at A, B, C and D), h = 0
F = 3(4 – 1) – 2 × 4 – 1 × 0
F = 1

Note: In this example, ‘D’ and ‘E’ as a prismatic pair count only as one lower pair.

The number of DOFs of a mechanism is also called the mobility of the mechanism. The mobility 
is the number of input parameters (usually paired variables) that have to be individually controlled 
to bring the mechanism into a particular desired position.

In order to control a mechanism, the number of independent input motions must equal the DOFs 
of the mechanism. As an example, the transom in Example 11.1 has only a single degree of freedom; 
therefore, only one independent input motion is required to open and close the transom, that is, push 
and pull on the link (1) opens and closes the window.

11.8  GRASHOF’S LAW

Prior to discussing Grashof’s Law, it will be useful to extend the definitions as covered in Sections 
11.3 and 11.4.

In a planar mechanism, the simplest group of lower pair mechanisms will be the four-bar chain 
or linkage and comprises four bar-shaped links and turning pairs as depicted in Figure 11.9a 
through e.

The fixed link is referred to as either the ‘fixed link’ or the ‘frame’. The link that is opposite the 
frame is called the ‘coupler link’. The links that are hinged to the frame are called ‘side links’. A 
link that is free to rotate through 360° with respect to a second link is said to revolve relative to the 
second link (not necessary the frame). Where it is possible for all four links to become simultane-
ously aligned, such a state is called a ‘change point’.

2

A4

3 B

2D

1

7

6
C

5
E

FIGURE 11.8  Example 11.1.
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Some important concepts in link mechanisms are

	 1.	Crank: A side frame that revolves relative to the frame is called a ‘crank’.
	 2.	Rocker: Any link that does not revolve is referred to as a ‘rocker’.
	 3.	Crank–rocker mechanism: In a four-bar chain, if the shorter side link revolves and the 

other one rocks (that is oscillates), this is called a ‘double-crank’ mechanism.
	 4.	Double-crank mechanism: In a situation where both side links revolve, this is called a 

‘double-crank’ mechanism.
	 5.	Double-rocker mechanism: In a four-bar chain where both side links rock, this is called a 

‘double-rocker’ mechanism.

11.8.1 C lassification

Referring to Figure 11.9a, the following notation is defined:
In a four-bar chain, the line segment between hinges on a given link is called a ‘bar’ where ‘b’ 

is the length of the shortest bar, ‘c’ is the length of the longest bar and ‘a’ and ‘d’ are the lengths of 
intermediate bars.

Revolving pairs

‘p’ = Frame. ‘s’ = Crank.

‘I’ = Coupler.

‘I’ = Frame. ‘s’ = Crank.

‘p’ = Coupler. ‘q’ = Lever. ‘s’ = Coupler. ‘p’ = Lever.

‘q’ = Lever.

Fixed pivot points

Frame link

s s
p

I

I

q
p

q

‘s’ = Frame.

‘q’ = Coupler.

‘q’ = Frame. ‘I’ = Crank.

‘I’ = Crank.

‘p’ = Lever.

(c)(b)

(a)

(e)(d)

Revolving pairs

A four-bar chain 

Links

s

q

p

l

s p
q

s p
q

l

FIGURE 11.9  (a)–(e): Inversions of various linkages.
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In certain cases, it may be required to design a four-bar mechanism where the input link is driven 
and rotates continuously. It is essential that the input link is able to rotate through a complete revo-
lution without any binding. Grashof provides a law which provides a simple test for this condition.

Grashof’s law states that the sum of the longest and shortest links cannot be greater than the sum 
of the remaining links if there is to be continuous relative rotation between two members.

From Figure 11.9a through e, it can be seen that one of the links (usually the shortest link) will 
be able to rotate continuously if the following conditions are met

	 s(shortest link) l(longest link) p  q+ ≤ + 	 (11.5)

This being so will satisfy Grashof’s law and different inversions will be possible by fixing the 
different links within the chain.

The mechanism satisfying Grashof’s criterion is called Grashof’s linkage.
For a non-Grashof linkage, only a rocker–rocker mechanism will occur as in the case where

	 s(shortest link) l(longest link) p  q+ > + 	 (11.6)

In this case, all three mobile links will rock.

EXAMPLE 11.2

In a four-bar mechanism, the lengths of the driver-crank, coupler and follower link are 150, 250 
and 300 mm, respectively. The fixed link length is ‘La’. Determine the range of values for ‘La’ so 
as to make the mechanism:

	 1.	Crank–crank mechanism
	 2.	Crank–rocker mechanism

Solution

For the crank–crank mechanism, the conditions to be satisfied are

	 150 mm + 250 mm ≤ La + 300 mm

	 400 mm ≤ La + 300 mm

	 La ≤ 100 mm	 (Ans)

For the crank–rocker mechanism, the conditions to be satisfied are

•	 The link adjacent to the fixed link must be the smallest link.
•	 s + l ≤ p + q.

Two possibilities have to be considered:

	 1.	When Lo is the longest link.
	 2.	When Lo is not the longest link.

When Lo is the longest link, from Grashof’s criterion:

	 Lo + 150 ≤ 250 + 300

or

	 Lo ≤ 400
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When Lo is not the longest link, from Grashof’s criterion:

	 300 + 150 ≤ Lo + 250

or

	 Lo ≥ 200

Hence, the crank–rocker mechanism, range of values for Lo is

	 200 ≤ Lo ≤ 400 mm (Ans)

11.9  FOUR-BAR LINKAGE

11.9.1 P lanar Four-Bar Linkages

The four-bar linkage or four-bar chain is fundamental in a wide range of mechanisms and takes 
many different shapes and sizes. As a mechanism, it is fairly simple to manufacture, inexpen-
sive, easy to maintain and robust. It has the ability to operate at low and high speeds, transmit 
small or large loads and operate in a wide range of environments with suitable protection. It 
is possible to design planar four-bar linkages to cover a wide range of movements including 
complex path patterns. Examples of planar four-bar linkages can be found in a wide range of 
industries including earth-moving machines, landing gear systems in aviation, suspension units 
in the automotive industry and automatic assembly machines in the manufacturing industry, to 
name but a few.

11.9.2 I nversion

A mechanism is defined as a kinematic chain where one of the links is fixed; thus, by fixing the indi-
vidual links one at a time, a number of variants of the mechanisms are obtained. These variants are 
dependent upon the number of links. These variants of the kinematic chain are called ‘inversions of 
kinematic chain’ or ‘inversions of mechanism’.

It should be noted that the relative motion between the various links is not changed in any man-
ner through the process of inversion, but their absolute motions (measured in respect of the fixed 
link) may be altered drastically.

Most mechanisms are reversible where in one configuration the ‘driver’ link transmits motion to 
a ‘follower’; in another configuration of the same mechanism, the role is reversed and the driver link 
then becomes the follower and the link that initially was the follower then becomes the driver. An 
example of this is when a reciprocating steam engine is considered where the piston is the driver and 
the flywheel is the follower, while in a reciprocating air compressor, the flywheel becomes the driver.

Consider the four-bar linkage depicted in Figure 11.10a. Figure 11.10b through e shows the vari-
ous inversions possible with the basic linkage. The four inversions look identical to each other but 
their mobility can be significantly varied by altering the proportions of lengths of the various links.

Planar four-bar linkages are constructed from links connected in a loop by four one degree 
of freedom joints. A joint may be either hinged (revolute), denoted by ‘R’, or sliding (prismatic), 
denoted by ‘P’. A planar quadrilateral linkage formed of four links and four revolute joints is desig-
nated ‘RRRR’. A slider–crank linkage constructed from four links and connected by three revolute 
joints and one prismatic joint is designated ‘RRRP’. If a double slider is used, this will be a ‘PRRP’ 
linkage (see Figure 11.11).

As described earlier in the chapter, one link of the chain is usually fixed and is called the ‘ground’ 
link, fixed link or the frame. The two links that are connected to the frame are referred to as the 
‘grounded links’ and these are usually the input and output links of the system. The remaining link 
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is called the ‘floating link’ and this is also called a ‘coupler’ or ‘connecting link’ as it connects the 
input to the output.

Section 11.8 describes Grashof’s law for a planar quadrilateral four-bar linkage where the sum of 
the shortest link + longest link should be either shorter or equal to the sum of the remaining links. 
This is the requirement for the shortest link (usually referred to as the crank) to rotate fully with 
respect to a neighbouring link.

11.9.3 S lider–Crank Linkage

A slider–crank linkage or chain is a specialised form of a four-bar linkage where one turning pair 
is replaced by a sliding pair. Various inversions of slider–crank linkages are obtained by fixing dif-
ferent links and these are discussed further below with reference to Figure 11.12.

(d) (e)

A

2
B

3 C

4

D D

4

C3
B

2

A
1 1

(a) (b) (c)

B

2

A
1 D

C

A

2

B
3

C

4

D
1

A

2

B
3

4

D

C

1

4

FIGURE 11.10  Variants of a four-bar chain. (a) Basic kinematic chain, (b) variant ‘b’, (c) variant ‘c’, (d) vari-
ant ‘d’ and (e) variant ‘e’.
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FIGURE 11.11  Examples of revolute and prismatic joints. (a) Planar linkage (RRRR), (b) slider-crank link-
age (RRRP) and (c) double-slider linkage (PRRP).
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FIGURE 11.12  Slider–crank mechanism.
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11.9.3.1  Link 1 Fixed

If link 1 of Figure 11.12 is fixed and link 2 is allowed to act as a crank, the resulting mechanism is 
called a slider–crank mechanism. This converts reciprocating motion into rotary motion or vice versa.

11.9.3.2  Link 2 Fixed

When link 2 of the slider–crank linkage is fixed and link 3 acts as a crank, link 1 will rotate about 
centre ‘O’ along the slider 4, which in turn will reciprocate along the link as in Figure 11.13. This 
inversion produces two popular forms of mechanisms:

	 1.	Whitworth quick return mechanism
	 2.	Rotary engine configuration

Figure 11.14 depicts the Whitworth quick return mechanism that is used in a number of machine 
tools including the ‘shaper’ in which a fixed tool is passed over a work piece at the correct cutting 
speed and returned to its starting point in a shorter time, thereby reducing the overall cycle time.

2

O

1

3

4

FIGURE 11.13  Inversion of a slider–crank chain.
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FIGURE 11.14  Whitworth quick return mechanism.
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In this mechanism, the link ‘A:C’ (link 3) that forms the turning pair is fixed. The driving crank 
‘C:B’ revolves at a constant angular speed around the centre ‘C’. A sliding block which is attached 
to the crank pin at ‘B’ is fitted in and slides in the slotted bar ‘A:P’. This causes the slotted bar to 
oscillate about the pivot point ‘A’. The slotted link is connected to the shaper ram that carries the 
cutting tool via a connecting link ‘P:R’ and this reciprocates along the line of stroke ‘R1:R2’.

Positions ‘A:P1’ and ‘A:P2’ are tangential to the circle ‘A:B1’ and ‘A:B2’. The forward-cutting 
action occurs when the crank rotates from the position ‘C:B1’ to ‘C:B2’ (or through the angle ‘β’) 
when rotating in the clockwise direction. The return stroke occurs when the crank rotates from posi-
tion ‘C:B2’ to ‘C:B1’ (or through the angle ‘α’ when rotating in the clockwise direction).

As the crank is rotating at a uniform angular speed, it follows that

	

Time of cutting stroke
Time of return stroke

= = ° −
β
α

β
β360 	

(11.7)

or

	

360° − α
α 	

(11.8)

As the cutting tool travels the distance of ‘R1:R2’ during the total cutting cycle, the length of 
stroke will be

	 = = = = ∠R R P P 2 P Q 2P sin  P AQ1 2 1 2 1 1 1⋅ ⋅ 	 (11.9)
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From a study of Figure 11.14, it will be noted that the angle ‘β’ which produces the forward stroke 
of the ram is larger than the angle ‘α’ which produces the return stroke. As the crank is rotating at a 
uniform angular rotation, the return stroke will be completed in a shorter time to that of the forward 
stroke. For this reason, this mechanism is known as a quick return mechanism.

The output from a planar four-bar linkage is not restricted to the output link; in some applica-
tions, the output of the four-bar linkage could be taken from the coupler. In Figure 11.9 where the 
motion is required to be linear, such an application may be an automatic assembly machine such as 
a ‘pick and place’. This is also an example of a double-rocker mechanism.

Extensive use is made of loci generated by coupler curves in a wide range of industries from 
automatic assembly machines as described to industrial manipulators.

There are a number of ‘atlases’ containing a wide range of curves generated by points on the 
coupler link or extensions of the coupler in four-bar linkages. One such atlas has been produced by 
Hrones and Nelson which covers thousands of curves, but these are now being overtaken by mod-
ern simulation packages such as MATLAB® reducing the number of iterations to arrive at a more 
optimised curve.
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11.10  MECHANICAL ADVANTAGE OF A FOUR-BAR LINKAGE

One of the principal criteria for the designer to be aware of is the ability of a particular mechanism 
to be able to transmit force or torque. In some mechanisms including gear trains, these mechanisms 
transmit a constant torque ratio between the input and the output. In a linkage, this is not the case, 
as the geometric nature of the linkage will be varying all the time through the mechanism’s motion, 
and as such there will be a variation between the input and output ratios.

If it is considered that the mechanism is a conservative system (i.e. energy losses due to friction, 
heat sound, etc. are negligible when compared with the total energy that is transmitted by the system 
as shown in Figure 11.15), it also assumes that the effects of inertial forces are also negligible, that 
is, ‘power in’ will equal ‘power out’ (Pin = Pout).

Hence, the ‘torque in’ (Tin) times the ‘angular velocity in’ (ωin) will equal the ‘torque out’ (Tout) 
times the ‘angular velocity out’ (ωout).

That is

	 Pin = Tin ⋅ ωin = Tout ⋅ ωout = Pout	 (11.13)

Alternatively:

	 Pin = Fin ⋅ Vin = Fout ⋅ Vout = Pout	 (11.14)

where Tin and Fin are torques applied to the linkage chain and Tout and Fout are those that are exerted 
by the chain, and Vin and Vout are the velocities of the points through which Fin and Fout, respectively, 
act.

In vector form:

	 V ⋅ F = VF cos(arg F − arg V)	 (11.15)

Also,

	 V ⋅ F = VxFx + VyFy	 (11.16)

It should be noticed that the units of torque times angular velocity together with the scalar prod-
ucts of force times velocity both represent power as in Equation 11.13.

That is

	

T
T

out

in

in

out

= ω
ω 	

(11.17)

These relationships are dimensionless.

No losses

Mechanism Output:Input:
(Power or
energy)

(Power or
energy)

FIGURE 11.15  Conservation of power and energy through a mechanism.
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In cases where the input force generates an output torque (or vice versa):
By definition, the ‘mechanical advantage (MA) of a system is the ratio of the magnitude of ‘Fout’ 

over ‘Fin’, that is

	
MA

F
F

out

in
=

	
(11.18)

where	 F = | F |

Torque is the product of force ‘F’ times radius ‘r’. Combining Equations 11.13 and 11.18 and solv-
ing for MA, the following equation will result
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and
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In SI units, these dimensions are rad/s to m/s and N/Nm (or the inverse).
A power, force or torque requirement can be converted into a velocity ratio and velocity analysis 

can then be used to design a mechanism for a required mechanical advantage.
Bear in mind that velocity ratio is normally a function of the mechanism position, and therefore 

the mechanical advantage will also be a function of the mechanism position.
To summarise, the mechanical advantage of a planar four-bar linkage is defined as the ratio of 

the output power or torque exerted by the driven link or follower link to the required input power or 
torque at the driver link.

The mechanical advantage of the four-bar linkage is directly proportional to the sine of the 
angle ‘γ’ between the coupler and the follower and inversely proportional to the sine of the angle 
‘β’ between the coupler and the driver. For one complete cycle of the mechanism, both these angles 
‘γ’ and ‘β’ are continuously changing and as a result the mechanical advantage also changes as the 
linkage moves (see Figure 11.16).

11.11  FREUDENSTEIN’S EQUATION

Freudenstein developed a simple algebraic method for determining the position of an output link 
knowing the length of the four links and the position of the input link.

Consider the four-bar linkage chain shown in Figure 11.17.
The position vector of the links has the following relationship:

	 l1 + l2 + l3 + l4 = 0	 (11.21)

c

a

d

b

α β

FIGURE 11.16  Mechanical advantage.
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Equating the horizontal distances:

	 l1 cos θ1 + l2 cos θ2 + l3 cos θ3 + l4 cos θ4 = 0	 (11.22)

Equating the vertical distances:

	 l1 sin θ1 + l2 sin θ2 + l3 sin θ3 + l4 sin θ4 = 0	 (11.23)

Making the assumption that θ1 = 180°, hence, sin θ1 = 0, cos θ1 = −1.
Rearranging and squaring both sides in respect to l3:

	 l cos l l l2
1 23

2
3 2 4 4

2θ θ θ= −( cos cos )− 	 (11.24)

	 l sin l sin l sin2
3 2 2 4 4

2
3
2 θ θ θ= − −( ) 	 (11.25)

Summing Equations 11.24 and 11.25 and using the following relationships:

	 cos( ) cos cos sin sin sin cosθ θ θ θ θ θ θ θ2 4 2 4 2 4
2 2 1− = + + =and 	 (11.26)

The following relationship will result:
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(11.27)

The following will result in Freudenstein’s equation:

	 K co K K1 3s cos cos( )θ θ θ θ2 2 4 2 4+ + = − 	 (11.28)

where
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(11.31)
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FIGURE 11.17  Four-bar linkage vector representation.
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The equation can be used to design a mechanism from a required relationship between input to 
output; in this case, the unknowns are the lengths of the links or more frequently the ratios of the 
links l2/l1, l4/l1 and l3/l1. If three desired values of the output are fixed for three desired values of the 
input (co-ordinating input and output positions), three equations in three unknowns are produced 
and hence the ratio of the links relating to the length of the fixed link l1.

To obtain an expression for the output θ4, it will be found more convenient to write Equation 
11.28 as follows:

	 K K K1 2cos cos cos cos sin sinθ θ θ θ θ θ2 1 3 2 1 2 1+ − = + 	 (11.32)

Collecting terms containing θ1 gives
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Solving for l1, recall from trigonometry that
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Equation 11.33 becomes
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	 (11.34)

This equation is a quadratic in ‘t’ and the solution will be
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(11.35)

There being two solutions:
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Corresponding to the positive sign, and

	
θ1

2 2 2
− −= − + −

+2 tan
A A B C

B C
1 

	
(11.37)

These two values relate to the two possible ways that the linkage can be assembled as depicted 
in Figure 11.18 for the given values of l1, l2, l3, l4 and ABCD will be referred to as an ‘open’ linkage 
and ABCD as a ‘crossed’ linkage.

EXAMPLE 11.3

A four-bar linkage has the following parameters:

Crank  = 100 mm
Coupler  = 200 mm
Follower  = 200 mm
Fixed link  = 200 mm

Consider the quadrilateral chain shown in Figure 11.19. Determine the Freudenstein equation 
when the input link (l1) is indexed every 15° between 0° and 360°.

The Freudenstein equation is given as

	 K1 – K2 ∙ cosθ4 + K3 – cos(θ4 – θ1) = 0

where

	
K

l
l

 =1
4

3
= =200

100
1 00.

Open linkage

Closed linkage

B

C

D

C′

A

FIGURE 11.18  Open and closed linkages.
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FIGURE 11.19  Example 11.3, kinematic chain.
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Table 11.1 tabulates the results from the above equations.

TABLE 11.1
Example of Freudenstein’s Equation, Four-Bar Linkage—Freudenstein’s 
Equation

Link Lengths (mm)

a 100

b 200

c 200

d 200

Ratio 1 1

Ratio 2 2

Ratio 3 1.25

Input Angle, θ1 Output Angle, θ2

Degree Radian Degree Radian
Freudenstein’s 

Equation

0 0.0000 41 0.7156 5.2120
15 0.2618 47 0.8203 3.4004
30 0.5236 53 0.9250 4.6194
45 0.7854 60 1.0472 4.9145
60 1.0472 68 1.1868 1.5152
75 1.3090 75 1.3090 −0.5935
90 1.5708 83 1.4486 0.9970
105 1.8326 89 1.5533 2.1873
120 2.0944 94 1.6406 −0.3358
135 2.3562 97 1.6930 3.1452
150 2.6180 96 1.6755 3.4402
165 2.8798 89 1.5533 0.4053
180 3.1416 76 1.3264 1.5482
195 3.4034 60 1.0472 5.1509
210 3.6652 48 0.8378 3.3238
225 3.9270 40 0.6981 4.5219
240 4.1888 34 0.5934 3.7234
255 4.4506 31 0.5411 1.0047
270 4.7124 29 0.5061 4.3657
285 4.9742 29 0.5061 37.859
300 5.2360 29 0.5061 30.661
315 5.4978 31 0.5411 0.1115
330 5.7596 33 0.5760 2.3958
345 6.0214 37 0.6458 −0.2732
360 6.2832 41 0.7156 4.0967

Note:	 Freudenstein’s equation: ‘F’ = Ratio 1 – Ratio 2 × cos θ4 + Ratio 3 – cos (θ1 – θ4) = 0.
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11.12  DRAWING VELOCITY VECTORS FOR LINKAGES

In the slider–crank linkage example shown in Figure 11.20, link ‘OA’ is driven and connects to a 
further link ‘AB’. This, in turn, connects to a slider block at ‘B’, which is allowed to reciprocate in 
a horizontal plane.

This section will concentrate on determining the velocity of the links using a graphical method 
for evaluating the link velocities. This is considered easier than using vector arithmetic and is capa-
ble of achieving accurate values.

EXAMPLE 11.4

To demonstrate the method, again considering Figure 11.20, the following values are applied to 
the figure. The individual link velocities will be determined for the position shown:

‘OA’ = 75 mm

‘AB’ = 200 mm

‘x’ = 75 mm

‘θ’ = 45°

‘N’ = 2000 rev/min

In this example, there are eight steps required to find the absolute velocity of the slider ‘B’ as 
well as the relative velocity of the slider with respect to the joint ‘A’:

Step 1: Draw a space diagram of the mechanism. This will generally be a scaled representation 
of the mechanism at the desired orientation of the links. The scale chosen will be deter-
mined on the method of drawing. If the drawing is being sketched, the scale will be dictated 
by the size of the paper being used. Alternatively, if the sketch is being drawn using a suit-
able CAD type program, then the sizes will be the actual dimensions.

Step 2: The first vector ‘OA’ is drawn as in Figure 11.21a with a length of 75 mm inclined at an 
angle of 45° to the horizontal.

Step 3: The diagram is continued by drawing in the vector ‘AB’ having a length of 200 mm and 
intersecting with the axis, which is 75 mm below the fixed point ‘O’ at ‘B’. At the completion 
of step 3, a diagram will consist of the two lines ‘OA’ and ‘AB’ as shown in Figure 11.21b.

Step 4: Calculation of the linear velocity of joint ‘A’.
The rotational speed ‘N’ of the link ‘OA’ = 2000 rev/min; this is equivalent to 209.44 rad/s.

	 The linear velocity of the link ‘OA’ = angular velocity × length of the link ‘OA’

	 Linear velocity of link OA = 209.44 rad/s × 75 mm
	 = 15,708 mm/s

Step 5: The velocity vector diagram can now be progressed by drawing the velocity vector 
for the link ‘OA’. This is drawn perpendicular to the link having a length equivalent to 

O

N
A

B

θ

75 mm

200 mm

75 mm

FIGURE 11.20  Space diagram for a slider–crank mechanism.
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15,708 mm, depending on the scale being drawn. This will represent the velocity vector Voa’ 
with a value of 15,708 mm/s as shown in Figure 11.21c.

Step 6: The following step is to draw the velocity vector for the link ‘AB’. There are two points 
known about this vector:
•	 It will start from the point ‘A1’ of the velocity vector diagram.
•	 It will be perpendicular to the orientation of the link ‘AB’ as shown in Figure 11.20.

At this point, the value of the ‘A1B1’ is not known (the linear velocity of the joint ‘B’ with respect 
to the joint ‘A’). The diagram will look similar to Figure 11.21d.

Step 7: To find the location of point ‘B1’, the use of the property of point ‘B’ will be used. Point 
‘B’ will always have the motion only in the horizontal direction; hence, it will pass through 

200 mm

75 mm

OA = 75 mm
A

(a) (b)

(c) (d)

(e)

45°

A A

B

A′

O′ O′

A′

90°

90°

B

This vector to be
perpendicular to link ‘AB’

This vector to be
perpendicular to link ‘OA’

15,708 mm/s

20362.8 mm/s

14,458 mm/s

A′

B’

A

B

O

O

O

A

FIGURE 11.21  Velocity diagrams for Example 11.4. (a) Link OA step 2, (b) space diagram at step 3, (c) 
velocity diagram at step 5, (d) velocity diagram at step 6 and (e) velocity diagram at step 7.
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the point ‘O’ (Joint ‘B’ is connected to the slider and is only allowed to reciprocate in the 
horizontal direction). Connecting the horizontal line with point ‘O’ gives the velocity of 
the joint ‘B’ with respect to joint ‘O’. This now completes the final velocity vector of the 
mechanism. The final velocity diagram will look like Figure 11.21e.

Step 8: All that remains is to measure the length of the vectors to obtain the velocity of joint ‘B’ 
with respect to ‘A’ from the length of the line ‘A1B1’ which measures 14,458 mm/s and the 
velocity of point ‘B’ with respect to ‘O’ (or the ground) measuring 20,362.8 mm/s.
This procedure can be repeated for the mechanism with varying values of ‘θ’ and the veloc-

ity profile of the mechanism can be resolved.
The method outlined above can be used to determine velocity vectors for other mecha-

nisms without difficulty. Its prime advantage is that the method is easily understood.
Section 11.13 will focus on drawing the acceleration vector diagram.

11.13  DRAWING ACCELERATION VECTORS FOR LINKAGES

In Section 11.12, a velocity diagram for a slider–crank mechanism was developed. In this section, 
an acceleration vector diagram for the same example will be discussed.

Reiterating, the space diagram for the slider–crank mechanism is shown in Figure 11.20.
Before proceeding, there are a number of points that need to be borne in mind regarding the 

acceleration diagrams for a mechanism.
Item 1: Typically, there will be two components of acceleration:

•	 Radial
•	 Tangential

Item 2: The direction of the radial component of acceleration will always be parallel to the ori-
entation of the link.

Item 3: The direction of the tangential component will always be perpendicular to the orientation 
of the link.

Item 4: In the case of the end of a link that is moving at a constant angular velocity (i.e., a link 
that is pivoting at one end and rotating at a constant rev/min with respect to the pivot point), the 
rotating end will only have a radial acceleration component with no tangential component.

Item 5: Where a joint moves in a straight line (such as a slide or a cylinder), there will be no radial 
acceleration component. The direction of the total acceleration of the joint, in such cases, will be 
parallel to the line of the movement of the joint.

Item 6: The radial acceleration for a link can be calculated from the following equation:

	
A xy W

V

xyxy xy
xy= × =2
2

where

Axy is the radial acceleration of joint ‘x’ with respect to joint ‘y’
Wxy is the angular velocity of joint ‘x’ with respect to joint ‘y’
Vxy is the linear velocity of joint ‘x’ with respect to joint ‘y’
xy is the length of link ‘xy’

EXAMPLE 11.5

The following steps are required to draw an acceleration vector diagram for the slider–crank 
mechanism shown in Figure 11.20.

Step 1: Orientation of link ‘OA’. The joint ‘A’ is rotating at a constant angular velocity (2000 rev/
min) about joint ‘O’; from item 4, joint ‘A’ will only have a radial component with no tangential 
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component of acceleration. From item 2, the radial component in the acceleration vector dia-
gram will be orientated parallel to the link ‘OA’.

Step 2: Value of the radial acceleration component for the link ‘OA’. From the Example state-
ment 11.12, the angular velocity of the link ‘OA’ (Woa) is 2000 rev/min = 209.44 rad/s and 
the length of the link ‘OA’ is 75 mm.

From Item 6, the radial acceleration component for the link ‘OA’ is calculated as

	 Aroa mm 3,289,884 mm/s2= × =75 209 442.

Step 3: Representing Aroa in the acceleration diagram. Due to the very large numbers encoun-
tered with the acceleration values, it will be sensible to give them a scale factor to make 
the drawing more manageable. In this instance, a scale factor of 104 will give the length of 
the vector Aroa of 328.99 mm in the acceleration vector diagram. As there is no tangential 
component for the link, ‘Arao’ will represent Aao; this is shown by the vector ‘O2A2’ in 
Figure 11.22a.

Step 4: Drawing the radial component of acceleration for the joint ‘B’ with respect to ‘A’, Arba 
for the link ‘AB’.

Start by drawing a line from point ‘A2’ to the point ‘z’ as shown in Figure 11.22b and 
orientated along the link ‘AB’ of the space diagram.

Using item 6 to calculate the value of Arba:

	
Arba

Vba
BA

= ( )2

	
= 14 458

200

2,

	 = 1,045,168.82 mm/s2

OA = 75 mm
Arao = 3,289,884 mm/s2

Arba = 1,045,168.82 mm/s2

45°

A

(a) (b)
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Z

O2

O

(c)
O2
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Atba
A2

Arba
Z

(e)

A2

Z

Abo = 972,700 mm/s2

Aba = 4,036,700

Arba = 1,045,168.82 mm/s2

O2 B2

(d)

B2O2

Aao

Atba
A2

Arba
Z

FIGURE 11.22  Acceleration diagrams for Example 11.5. (a) Link OA step 1, (b and c) acceleration diagram 
Step 5 and (d and e) acceleration diagram Step 6.



327Introduction to Linkages

The values of ‘Vba’ and ‘BA’ are obtained from Example 11.4.
The scaled value of Arba / mm= =1 045 168 82 10 104 5174, , . . .

Step 5: Drawing the tangential component (Atba) for the link AB. From item 3, the tangen-
tial component of the acceleration will be perpendicular to the radial component. At the 
moment, the value of the tangential component (Atba) of acceleration is unknown.
Referring to Figure 11.22c, a line is drawn perpendicular to the line A2z.

Step 6: Drawing the acceleration vector for the slider ‘B’. From item 5, the total acceleration of 
the joint ‘B’ with respect to the joint ‘O’ is represented by a horizontal straight line starting 
from ‘O2’ until it intersects the line representing the vector ‘Atba’.

In Figure 11.22d, the line O2 represents the total linear acceleration for the slider with 
respect to joint ‘O’.

Step 7: Calculating the output acceleration values. The length of the lines ‘A2B2’ and ‘O2B2’ 
represents the linear acceleration of the joint ‘B’ with respect to the joint ‘O’. This is shown 
in Figure 11.22e.

Measuring the respective lengths and multiplying by the scale factor, the following 
values are obtained:

Linear acceleration of joint ‘B’ with respect to joint ‘A’

	 Aba = 4,036,700 mm/s2

Linear acceleration of joint ‘B’ with respect to the joint ‘O’

	 Abo = 972,700 mm/s2
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need for their day-to-day work… I like the practical treatment of the subject. Key points are 
explained simply and clearly. There are many worked examples to illustrate the application 
of the theory. The book would be suitable for engineers wishing to refresh their knowledge 
of the topics covered.”
––Duc Pham, University of Birmingham, UK

Author Keith L. Richards believes that design engineers spend only a small fraction 
of time actually designing and drawing, and the remainder of their time finding relevant 
design information for a specific method or problem. He draws on his own experience 
as a mechanical engineering designer to offer assistance to other practicing and student 
engineers facing the same struggle. Design Engineer’s Reference Guide: Mathematics, 
Mechanics, and Thermodynamics provides engineers with a roadmap for navigating 
through common situations or dilemmas. 

This book starts by introducing reference information on the coverage of differential and 
integral calculus, Laplace’s transforms, determinants, and matrices. It provides an analysis 
of numerical methods of integration, Newton–Raphson’s methods, the Jacobi iterative 
method, and the Gauss–Seidel method. It also contains reference information as well as 
examples and illustrations that reinforce the topics of most chapter subjects.

A companion to the Design Engineer’s Handbook and Design Engineer’s Case Studies 
and Examples, this textbook covers a range of basic engineering concepts and common 
applications including

• Mathematics
• Numerical analysis
• Statics and kinematics
• Mechanical vibrations
• Control system modeling
• Basic thermodynamics
• Fluid mechanics and linkages

Intended as an entry-level text for students needing to understand the underlying principles 
before progressing to a more advanced level, Design Engineer’s Reference Guide: 
Mathematics, Mechanics, and Thermodynamics also serves as a basic reference for 
beginning design engineers.
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